|
--- |
|
license: mit |
|
datasets: |
|
- togethercomputer/RedPajama-Data-V2 |
|
language: |
|
- en |
|
library_name: transformers |
|
--- |
|
|
|
This is a set of sparse autoencoders (SAEs) trained on the residual stream of [Llama 3.1 8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) using the 10B sample of the [RedPajama v2 corpus](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2), which comes out to roughly 8.5B tokens using the Llama 3 tokenizer. The SAEs are organized by hookpoint, and can be loaded using the EleutherAI [`sae` library](https://github.com/EleutherAI/sae). |
|
|
|
With the `sae` library installed, you can access an SAE like this: |
|
```python |
|
from sae import Sae |
|
|
|
sae = Sae.load_from_hub("EleutherAI/sae-llama-3.1-8b-32x", hookpoint="layers.23.mlp") |
|
``` |