metadata
license: mit
datasets:
- togethercomputer/RedPajama-Data-V2
language:
- en
library_name: transformers
This is a set of sparse autoencoders (SAEs) trained on the residual stream of Llama 3.1 8B using the 10B sample of the RedPajama v2 corpus, which comes out to roughly 8.5B tokens using the Llama 3 tokenizer. The SAEs are organized by hookpoint, and can be loaded using the EleutherAI sae
library.
With the sae
library installed, you can access an SAE like this:
from sae import Sae
sae = Sae.load_from_hub("EleutherAI/sae-llama-3.1-8b-32x", hookpoint="layers.23.mlp")