lilt-en-funsd / README.md
Dvivarelli's picture
End of training
a971d66 verified
metadata
library_name: transformers
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7319
  • Answer: {'precision': 0.8804733727810651, 'recall': 0.9106487148102815, 'f1': 0.8953068592057761, 'number': 817}
  • Header: {'precision': 0.6016949152542372, 'recall': 0.5966386554621849, 'f1': 0.5991561181434599, 'number': 119}
  • Question: {'precision': 0.9095106186518929, 'recall': 0.914577530176416, 'f1': 0.912037037037037, 'number': 1077}
  • Overall Precision: 0.8798
  • Overall Recall: 0.8942
  • Overall F1: 0.8869
  • Overall Accuracy: 0.8046

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4066 10.5263 200 1.0212 {'precision': 0.8098434004474273, 'recall': 0.8861689106487148, 'f1': 0.8462887200467561, 'number': 817} {'precision': 0.5106382978723404, 'recall': 0.6050420168067226, 'f1': 0.5538461538461538, 'number': 119} {'precision': 0.8872180451127819, 'recall': 0.8765088207985144, 'f1': 0.88183092013078, 'number': 1077} 0.8290 0.8644 0.8463 0.7855
0.0465 21.0526 400 1.4003 {'precision': 0.8215859030837004, 'recall': 0.9130966952264382, 'f1': 0.864927536231884, 'number': 817} {'precision': 0.5794392523364486, 'recall': 0.5210084033613446, 'f1': 0.5486725663716815, 'number': 119} {'precision': 0.8856624319419237, 'recall': 0.9062209842154132, 'f1': 0.895823772372648, 'number': 1077} 0.8427 0.8862 0.8639 0.7900
0.0143 31.5789 600 1.5416 {'precision': 0.8493150684931506, 'recall': 0.9106487148102815, 'f1': 0.8789131718842291, 'number': 817} {'precision': 0.5769230769230769, 'recall': 0.5042016806722689, 'f1': 0.5381165919282511, 'number': 119} {'precision': 0.8916967509025271, 'recall': 0.9173630454967502, 'f1': 0.9043478260869565, 'number': 1077} 0.8582 0.8902 0.8739 0.7835
0.0067 42.1053 800 1.5372 {'precision': 0.8668252080856124, 'recall': 0.8922888616891065, 'f1': 0.879372738238842, 'number': 817} {'precision': 0.5855855855855856, 'recall': 0.5462184873949579, 'f1': 0.5652173913043478, 'number': 119} {'precision': 0.8869801084990958, 'recall': 0.9108635097493036, 'f1': 0.8987631699496106, 'number': 1077} 0.8625 0.8818 0.8720 0.7937
0.0051 52.6316 1000 1.5657 {'precision': 0.8652912621359223, 'recall': 0.8727050183598531, 'f1': 0.8689823278488727, 'number': 817} {'precision': 0.5867768595041323, 'recall': 0.5966386554621849, 'f1': 0.5916666666666667, 'number': 119} {'precision': 0.8840321141837645, 'recall': 0.9201485608170845, 'f1': 0.9017288444040036, 'number': 1077} 0.8591 0.8818 0.8703 0.7988
0.0031 63.1579 1200 1.6563 {'precision': 0.8412698412698413, 'recall': 0.9082007343941249, 'f1': 0.8734549735138316, 'number': 817} {'precision': 0.6195652173913043, 'recall': 0.4789915966386555, 'f1': 0.5402843601895735, 'number': 119} {'precision': 0.8938700823421775, 'recall': 0.9071494893221913, 'f1': 0.9004608294930875, 'number': 1077} 0.8592 0.8823 0.8706 0.7973
0.0012 73.6842 1400 1.6712 {'precision': 0.8588374851720048, 'recall': 0.8861689106487148, 'f1': 0.8722891566265061, 'number': 817} {'precision': 0.6063829787234043, 'recall': 0.4789915966386555, 'f1': 0.5352112676056338, 'number': 119} {'precision': 0.8782608695652174, 'recall': 0.9377901578458682, 'f1': 0.9070498428378985, 'number': 1077} 0.8582 0.8897 0.8737 0.8013
0.0011 84.2105 1600 1.6732 {'precision': 0.8719153936545241, 'recall': 0.9082007343941249, 'f1': 0.8896882494004795, 'number': 817} {'precision': 0.6019417475728155, 'recall': 0.5210084033613446, 'f1': 0.5585585585585585, 'number': 119} {'precision': 0.8968609865470852, 'recall': 0.9285051067780873, 'f1': 0.9124087591240877, 'number': 1077} 0.8719 0.8962 0.8839 0.8089
0.0009 94.7368 1800 1.6677 {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817} {'precision': 0.6116504854368932, 'recall': 0.5294117647058824, 'f1': 0.5675675675675675, 'number': 119} {'precision': 0.8976449275362319, 'recall': 0.9201485608170845, 'f1': 0.9087574507106833, 'number': 1077} 0.8740 0.8922 0.8830 0.8126
0.0004 105.2632 2000 1.7264 {'precision': 0.8803317535545023, 'recall': 0.9094247246022031, 'f1': 0.8946417820590005, 'number': 817} {'precision': 0.6226415094339622, 'recall': 0.5546218487394958, 'f1': 0.5866666666666668, 'number': 119} {'precision': 0.9101741521539871, 'recall': 0.9220055710306406, 'f1': 0.9160516605166051, 'number': 1077} 0.8829 0.8952 0.8890 0.8074
0.0003 115.7895 2200 1.7219 {'precision': 0.8800959232613909, 'recall': 0.8984088127294981, 'f1': 0.8891580860084797, 'number': 817} {'precision': 0.625, 'recall': 0.5882352941176471, 'f1': 0.6060606060606061, 'number': 119} {'precision': 0.8974820143884892, 'recall': 0.9266480965645311, 'f1': 0.9118318867062585, 'number': 1077} 0.8756 0.8952 0.8853 0.8082
0.0002 126.3158 2400 1.7319 {'precision': 0.8804733727810651, 'recall': 0.9106487148102815, 'f1': 0.8953068592057761, 'number': 817} {'precision': 0.6016949152542372, 'recall': 0.5966386554621849, 'f1': 0.5991561181434599, 'number': 119} {'precision': 0.9095106186518929, 'recall': 0.914577530176416, 'f1': 0.912037037037037, 'number': 1077} 0.8798 0.8942 0.8869 0.8046

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0