lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7319
  • Answer: {'precision': 0.8804733727810651, 'recall': 0.9106487148102815, 'f1': 0.8953068592057761, 'number': 817}
  • Header: {'precision': 0.6016949152542372, 'recall': 0.5966386554621849, 'f1': 0.5991561181434599, 'number': 119}
  • Question: {'precision': 0.9095106186518929, 'recall': 0.914577530176416, 'f1': 0.912037037037037, 'number': 1077}
  • Overall Precision: 0.8798
  • Overall Recall: 0.8942
  • Overall F1: 0.8869
  • Overall Accuracy: 0.8046

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4066 10.5263 200 1.0212 {'precision': 0.8098434004474273, 'recall': 0.8861689106487148, 'f1': 0.8462887200467561, 'number': 817} {'precision': 0.5106382978723404, 'recall': 0.6050420168067226, 'f1': 0.5538461538461538, 'number': 119} {'precision': 0.8872180451127819, 'recall': 0.8765088207985144, 'f1': 0.88183092013078, 'number': 1077} 0.8290 0.8644 0.8463 0.7855
0.0465 21.0526 400 1.4003 {'precision': 0.8215859030837004, 'recall': 0.9130966952264382, 'f1': 0.864927536231884, 'number': 817} {'precision': 0.5794392523364486, 'recall': 0.5210084033613446, 'f1': 0.5486725663716815, 'number': 119} {'precision': 0.8856624319419237, 'recall': 0.9062209842154132, 'f1': 0.895823772372648, 'number': 1077} 0.8427 0.8862 0.8639 0.7900
0.0143 31.5789 600 1.5416 {'precision': 0.8493150684931506, 'recall': 0.9106487148102815, 'f1': 0.8789131718842291, 'number': 817} {'precision': 0.5769230769230769, 'recall': 0.5042016806722689, 'f1': 0.5381165919282511, 'number': 119} {'precision': 0.8916967509025271, 'recall': 0.9173630454967502, 'f1': 0.9043478260869565, 'number': 1077} 0.8582 0.8902 0.8739 0.7835
0.0067 42.1053 800 1.5372 {'precision': 0.8668252080856124, 'recall': 0.8922888616891065, 'f1': 0.879372738238842, 'number': 817} {'precision': 0.5855855855855856, 'recall': 0.5462184873949579, 'f1': 0.5652173913043478, 'number': 119} {'precision': 0.8869801084990958, 'recall': 0.9108635097493036, 'f1': 0.8987631699496106, 'number': 1077} 0.8625 0.8818 0.8720 0.7937
0.0051 52.6316 1000 1.5657 {'precision': 0.8652912621359223, 'recall': 0.8727050183598531, 'f1': 0.8689823278488727, 'number': 817} {'precision': 0.5867768595041323, 'recall': 0.5966386554621849, 'f1': 0.5916666666666667, 'number': 119} {'precision': 0.8840321141837645, 'recall': 0.9201485608170845, 'f1': 0.9017288444040036, 'number': 1077} 0.8591 0.8818 0.8703 0.7988
0.0031 63.1579 1200 1.6563 {'precision': 0.8412698412698413, 'recall': 0.9082007343941249, 'f1': 0.8734549735138316, 'number': 817} {'precision': 0.6195652173913043, 'recall': 0.4789915966386555, 'f1': 0.5402843601895735, 'number': 119} {'precision': 0.8938700823421775, 'recall': 0.9071494893221913, 'f1': 0.9004608294930875, 'number': 1077} 0.8592 0.8823 0.8706 0.7973
0.0012 73.6842 1400 1.6712 {'precision': 0.8588374851720048, 'recall': 0.8861689106487148, 'f1': 0.8722891566265061, 'number': 817} {'precision': 0.6063829787234043, 'recall': 0.4789915966386555, 'f1': 0.5352112676056338, 'number': 119} {'precision': 0.8782608695652174, 'recall': 0.9377901578458682, 'f1': 0.9070498428378985, 'number': 1077} 0.8582 0.8897 0.8737 0.8013
0.0011 84.2105 1600 1.6732 {'precision': 0.8719153936545241, 'recall': 0.9082007343941249, 'f1': 0.8896882494004795, 'number': 817} {'precision': 0.6019417475728155, 'recall': 0.5210084033613446, 'f1': 0.5585585585585585, 'number': 119} {'precision': 0.8968609865470852, 'recall': 0.9285051067780873, 'f1': 0.9124087591240877, 'number': 1077} 0.8719 0.8962 0.8839 0.8089
0.0009 94.7368 1800 1.6677 {'precision': 0.875, 'recall': 0.9082007343941249, 'f1': 0.8912912912912913, 'number': 817} {'precision': 0.6116504854368932, 'recall': 0.5294117647058824, 'f1': 0.5675675675675675, 'number': 119} {'precision': 0.8976449275362319, 'recall': 0.9201485608170845, 'f1': 0.9087574507106833, 'number': 1077} 0.8740 0.8922 0.8830 0.8126
0.0004 105.2632 2000 1.7264 {'precision': 0.8803317535545023, 'recall': 0.9094247246022031, 'f1': 0.8946417820590005, 'number': 817} {'precision': 0.6226415094339622, 'recall': 0.5546218487394958, 'f1': 0.5866666666666668, 'number': 119} {'precision': 0.9101741521539871, 'recall': 0.9220055710306406, 'f1': 0.9160516605166051, 'number': 1077} 0.8829 0.8952 0.8890 0.8074
0.0003 115.7895 2200 1.7219 {'precision': 0.8800959232613909, 'recall': 0.8984088127294981, 'f1': 0.8891580860084797, 'number': 817} {'precision': 0.625, 'recall': 0.5882352941176471, 'f1': 0.6060606060606061, 'number': 119} {'precision': 0.8974820143884892, 'recall': 0.9266480965645311, 'f1': 0.9118318867062585, 'number': 1077} 0.8756 0.8952 0.8853 0.8082
0.0002 126.3158 2400 1.7319 {'precision': 0.8804733727810651, 'recall': 0.9106487148102815, 'f1': 0.8953068592057761, 'number': 817} {'precision': 0.6016949152542372, 'recall': 0.5966386554621849, 'f1': 0.5991561181434599, 'number': 119} {'precision': 0.9095106186518929, 'recall': 0.914577530176416, 'f1': 0.912037037037037, 'number': 1077} 0.8798 0.8942 0.8869 0.8046

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dvivarelli/lilt-en-funsd

Finetuned
(46)
this model