|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: codebert-base-Malicious_URLs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# codebert-base-Malicious_URLs |
|
|
|
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8225 |
|
- Accuracy: 0.7279 |
|
- Weighted f1: 0.6508 |
|
- Micro f1: 0.7279 |
|
- Macro f1: 0.4611 |
|
- Weighted recall: 0.7279 |
|
- Micro recall: 0.7279 |
|
- Macro recall: 0.4422 |
|
- Weighted precision: 0.6256 |
|
- Micro precision: 0.7279 |
|
- Macro precision: 0.5436 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.8273 | 1.0 | 6450 | 0.8225 | 0.7279 | 0.6508 | 0.7279 | 0.4611 | 0.7279 | 0.7279 | 0.4422 | 0.6256 | 0.7279 | 0.5436 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|