metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codebert-base-Malicious_URLs
results: []
codebert-base-Malicious_URLs
This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8225
- Accuracy: 0.7279
- Weighted f1: 0.6508
- Micro f1: 0.7279
- Macro f1: 0.4611
- Weighted recall: 0.7279
- Micro recall: 0.7279
- Macro recall: 0.4422
- Weighted precision: 0.6256
- Micro precision: 0.7279
- Macro precision: 0.5436
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8273 | 1.0 | 6450 | 0.8225 | 0.7279 | 0.6508 | 0.7279 | 0.4611 | 0.7279 | 0.7279 | 0.4422 | 0.6256 | 0.7279 | 0.5436 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3