whisper-small-es / README.md
Dacavi's picture
End of training
935f00a
metadata
language:
  - es
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Es - Spanish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          args: 'config: es, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 13.333333333333334

Whisper Small Es - Spanish

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1798
  • Wer: 13.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6172 0.1 100 0.6200 107.3958
0.2709 0.21 200 0.3492 67.0833
0.2839 0.31 300 0.2959 40.7292
0.2876 0.41 400 0.2766 29.5833
0.2296 0.52 500 0.2375 17.3958
0.2649 0.62 600 0.2102 15.3125
0.2644 0.72 700 0.1957 17.3958
0.2384 0.82 800 0.1886 13.7500
0.2325 0.93 900 0.1811 13.6458
0.1374 1.03 1000 0.1798 13.3333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0