Whisper Small Es - Spanish

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1798
  • Wer: 13.3333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6172 0.1 100 0.6200 107.3958
0.2709 0.21 200 0.3492 67.0833
0.2839 0.31 300 0.2959 40.7292
0.2876 0.41 400 0.2766 29.5833
0.2296 0.52 500 0.2375 17.3958
0.2649 0.62 600 0.2102 15.3125
0.2644 0.72 700 0.1957 17.3958
0.2384 0.82 800 0.1886 13.7500
0.2325 0.93 900 0.1811 13.6458
0.1374 1.03 1000 0.1798 13.3333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
21
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dacavi/whisper-small-es

Finetuned
(2101)
this model

Dataset used to train Dacavi/whisper-small-es

Evaluation results