|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- zh |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- multimodal |
|
library_name: transformers |
|
--- |
|
|
|
|
|
## Introduction |
|
|
|
`Cylingo/Xinyuan-VL-2B` is a high-performance multimodal large model for the end-side from the Cylingo Group, which is fine-tuned with `Qwen/Qwen2-VL-2B-Instruct`, and uses more than 5M of multimodal data as well as a small amount of plain text data. |
|
|
|
It performs well on several authoritative Benchmarks. |
|
|
|
## How to use |
|
|
|
In order to rely on the thriving ecology of the open source community, we chose to fine-tune [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) to form our `Cylingo/Xinyuan-VL- 2B`. |
|
|
|
Thus, using `Cylingo/Xinyuan-VL-2B` is consistent with using `Qwen/Qwen2-VL-2B-Instruct`: |
|
|
|
```Python |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
# default: Load the model on the available device(s) |
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Cylingo/Xinyuan-VL-2B", torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
# default processer |
|
processor = AutoProcessor.from_pretrained("Cylingo/Xinyuan-VL-2B") |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", |
|
}, |
|
{"type": "text", "text": "Describe this image."}, |
|
], |
|
} |
|
] |
|
|
|
# Preparation for inference |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
|
|
# Inference: Generation of the output |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
|
|
``` |
|
|
|
|
|
|
|
## Evaluation |
|
We evaluated **[XinYuan-VL-2B](https://huggingface.co/thomas-yanxin/XinYuan-VL-2B)** using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) toolkit across the following benchmarks and found that **XinYuan-VL-2B** **outperformed** [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) released by Alibaba Cloud, as well as other models of comparable parameter scale that have significant influence in the open-source community. |
|
|
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6299c90ef1f2a097fcaa1293/7ThTCYfd_lDzsvaFLlUv2.png"> |
|
</p> |
|
|
|
You can see the results in [opencompass/open_vlm_leaderboard](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard): |
|
|
|
| Benchamrk | MiniCPM-2B | InternVL-2B | Qwen2-VL-2B | **XinYuan-VL-2B** | |
|
| :---: | :---: | :---: | :---: | :---: | |
|
| MMB-CN-V11-Test | 64.5 | 68.9 | 71.2 | **74.3** | |
|
| MMB-EN-V11-Test | 65.8 | 70.2 | 73.2 | **76.5** | |
|
| MMB-EN | 69.1 | 74.4 | 74.3 | **78.9** | |
|
| MMB-CN | 66.5 | 71.2 | 73.8 | **76.12** | |
|
| CCBench | 45.3 | 74.7 | 53.7 | 55.5 | |
|
| MMT-Bench | 53.5 | 50.8 | 54.5 | **55.2** | |
|
| RealWorld | 55.8 | 57.3 | 62.9 | **63.9** | |
|
| SEEDBench\_IMG | 67.1 | 70.9 | 72.86 | **73.4** | |
|
| AI2D | 56.3 | 74.1 | **74.7** | 74.2 | |
|
| MMMU | 38.2 | 36.3 | **41.1** | 40.9 | |
|
| HallusionBench | 36.2 | 36.2 | 42.4 | **55.00** | |
|
| POPE | 86.3 | 86.3 | 86.82 | **89.42** | |
|
| MME | 1808.6 | **1876.8** | 1872.0 | 1854.9 | |
|
| MMStar | 39.1 | 49.8 | 47.5 | **51.87** | |
|
| SEEDBench2\_Plus | 51.9 | 59.9 | 62.23 | **62.98** | |
|
| BLINK | 41.2 | 42.8 | **43.92** | 42.98 | |
|
| OCRBench | 605 | 781 | **794** | 782 | |
|
| TextVQA | 74.1 | 73.4 | **79.7** | 77.6 | |