thomas-yanxin commited on
Commit
3c1146a
1 Parent(s): 01d49e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -1
README.md CHANGED
@@ -9,10 +9,80 @@ tags:
9
  library_name: transformers
10
  ---
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  We evaluated **[XinYuan-VL-2B](https://huggingface.co/thomas-yanxin/XinYuan-VL-2B)** using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) toolkit across the following benchmarks and found that **XinYuan-VL-2B** **outperformed** [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) released by Alibaba Cloud, as well as other models of comparable parameter scale that have significant influence in the open-source community.
13
 
14
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6299c90ef1f2a097fcaa1293/7ThTCYfd_lDzsvaFLlUv2.png)
 
 
15
 
 
16
 
17
  | Benchamrk | MiniCPM-2B | InternVL-2B | Qwen2-VL-2B | **XinYuan-VL-2B** |
18
  | :---: | :---: | :---: | :---: | :---: |
 
9
  library_name: transformers
10
  ---
11
 
12
+
13
+ ## Introduction
14
+
15
+ `Cylingo/Xinyuan-VL-2B` is a high-performance multimodal large model for the end-side from the Cylingo Group, which is fine-tuned with `Qwen/Qwen2-VL-2B-Instruct`, and uses more than 5M of multimodal data as well as a small amount of plain text data.
16
+
17
+ It performs well on several authoritative Benchmarks.
18
+
19
+ ## How to use
20
+
21
+ In order to rely on the thriving ecology of the open source community, we chose to fine-tune [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) to form our `Cylingo/Xinyuan-VL- 2B`.
22
+
23
+ Thus, using `Cylingo/Xinyuan-VL-2B` is consistent with using `Qwen/Qwen2-VL-2B-Instruct`:
24
+
25
+ ```Python
26
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
27
+ from qwen_vl_utils import process_vision_info
28
+
29
+ # default: Load the model on the available device(s)
30
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
31
+ "Cylingo/Xinyuan-VL-2B", torch_dtype="auto", device_map="auto"
32
+ )
33
+
34
+ # default processer
35
+ processor = AutoProcessor.from_pretrained("Cylingo/Xinyuan-VL-2B")
36
+
37
+ messages = [
38
+ {
39
+ "role": "user",
40
+ "content": [
41
+ {
42
+ "type": "image",
43
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
44
+ },
45
+ {"type": "text", "text": "Describe this image."},
46
+ ],
47
+ }
48
+ ]
49
+
50
+ # Preparation for inference
51
+ text = processor.apply_chat_template(
52
+ messages, tokenize=False, add_generation_prompt=True
53
+ )
54
+ image_inputs, video_inputs = process_vision_info(messages)
55
+ inputs = processor(
56
+ text=[text],
57
+ images=image_inputs,
58
+ videos=video_inputs,
59
+ padding=True,
60
+ return_tensors="pt",
61
+ )
62
+ inputs = inputs.to("cuda")
63
+
64
+ # Inference: Generation of the output
65
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
66
+ generated_ids_trimmed = [
67
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
68
+ ]
69
+ output_text = processor.batch_decode(
70
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
71
+ )
72
+ print(output_text)
73
+
74
+ ```
75
+
76
+
77
+
78
+ ## Evaluation
79
  We evaluated **[XinYuan-VL-2B](https://huggingface.co/thomas-yanxin/XinYuan-VL-2B)** using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) toolkit across the following benchmarks and found that **XinYuan-VL-2B** **outperformed** [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) released by Alibaba Cloud, as well as other models of comparable parameter scale that have significant influence in the open-source community.
80
 
81
+ <p align="center">
82
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6299c90ef1f2a097fcaa1293/7ThTCYfd_lDzsvaFLlUv2.png">
83
+ </p>
84
 
85
+ You can see the results in [opencompass/open_vlm_leaderboard](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard):
86
 
87
  | Benchamrk | MiniCPM-2B | InternVL-2B | Qwen2-VL-2B | **XinYuan-VL-2B** |
88
  | :---: | :---: | :---: | :---: | :---: |