hawei_LinkedIn
correct meta data of base model
fcd6520
metadata
license: llama3.1
datasets:
  - survivi/Llama-3-SynE-Dataset
  - hfl/stem_zh_instruction
  - llamafactory/alpaca_zh
  - llamafactory/alpaca_gpt4_zh
  - hfl/ruozhiba_gpt4
  - codingsteven/Llama-3-8B-chat
language:
  - zh
base_model:
  - meta-llama/Llama-3.1-8B
model-index:
  - name: Control-LLM-Llama3.1-8B-SynE-Full-Parameter-Tuning
    results:
      - task:
          type: pretraining-evaluation
        dataset:
          type: mixed
          name: Pretraining Evaluation Dataset
        metrics:
          - name: exact_match,strict-match (meta_pretrain)
            type: exact_match
            value: 0.45445720757159036
            stderr: 0.0035036029889520047
            verified: false
          - name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
            type: exact_match
            value: 0.6482875134387959
            stderr: 0.005918167158231359
            verified: false
          - name: acc,none (meta_mmlu_5shot_pretrain)
            type: accuracy
            value: 0.649480131035465
            stderr: 0.004026616190778244
            verified: false
          - name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
            type: exact_match
            value: 0.34956781914893614
            stderr: 0.004347262544061378
            verified: false
      - task:
          type: chinese-evaluation
        dataset:
          type: mixed
          name: Chinese Evaluation Dataset
        metrics:
          - name: acc,none (ceval-valid)
            type: accuracy
            value: 0.5898959881129272
            stderr: 0.012699457390113113
            verified: false
          - name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
            type: exact_match
            value: 0.40193164933135217
            stderr: 0.01265090064840271
            verified: false
          - name: acc,none (cmmlu)
            type: accuracy
            value: 0.6018822310481782
            stderr: 0.004420298073040671
            verified: false
          - name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
            type: exact_match
            value: 0.4425833189431877
            stderr: 0.004506238417180843
            verified: false

Control-LLM-Llama3.1-8B-SynE-Full-Parameter-Tuning

This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset.

Evaluation Results

Here is an overview of the evaluation results and findings:

Benchmark Results Table

The table below summarizes evaluation results across Chinese tasks and original capabilities.

Model CEval CEvalC CMMLU CMMLUC C-Avg BBH MLU MLUP O-Avg Overall
Llama3.1-8B 48.3 12.8 51.1 14.1 13.9 65.2 65.4 35.5 45.9 29.9
Llama-3-SynE 57.7 22.3 57.1 22.8 22.8 61.9 64.0 32.6 42.9 32.9
Full Param Tune 59.0 40.2 60.2 44.3 43.8 64.8 64.9 35.0 45.4 44.6
Stack Expansion 56.0 32.7 55.2 33.4 33.3 62.3 65.6 35.3 44.8 39.1
Concat-Lerp* 57.1 34.8 57.0 37.4 37.1 64.4 64.6 35.8 45.9 41.5
Hybrid Expansion 58.9 44.7 57.9 44.3 44.4 65.1 65.7 36.9 46.8 45.6
Control LLM* 57.0 44.7 56.0 44.9 44.8 68.2 65.6 37.9 48.5 46.7

Explanation:

  • CEval: Chinese Evaluation
  • CEvalC: Chinese Evaluation (CoT - Chain of Thought)
  • CMMLU: Chinese MMLU
  • CMMLUC: Chinese MMLU (CoT)
  • C-Avg: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
  • BBH: BigBench Hard
  • MLU: MMLU (Massive Multitask Language Understanding)
  • MLUP: MMLU Pro
  • O-Avg: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
  • Overall: Combined average across all tasks

Full Parameter Tuning on Chinese-SynE

The following plot illustrates the Catastrophic Forgetting of full parameter tuning in terms of hidden states alignment drift.

Catastrophic Forgetting