Control-LLM-Llama3.1-8B-SynE-Full-Parameter-Tuning
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset.
Evaluation Results
Here is an overview of the evaluation results and findings:
Benchmark Results Table
The table below summarizes evaluation results across Chinese tasks and original capabilities.
Model | CEval | CEvalC | CMMLU | CMMLUC | C-Avg | BBH | MLU | MLUP | O-Avg | Overall |
---|---|---|---|---|---|---|---|---|---|---|
Llama3.1-8B | 48.3 | 12.8 | 51.1 | 14.1 | 13.9 | 65.2 | 65.4 | 35.5 | 45.9 | 29.9 |
Llama-3-SynE | 57.7 | 22.3 | 57.1 | 22.8 | 22.8 | 61.9 | 64.0 | 32.6 | 42.9 | 32.9 |
Full Param Tune | 59.0 | 40.2 | 60.2 | 44.3 | 43.8 | 64.8 | 64.9 | 35.0 | 45.4 | 44.6 |
Stack Expansion | 56.0 | 32.7 | 55.2 | 33.4 | 33.3 | 62.3 | 65.6 | 35.3 | 44.8 | 39.1 |
Concat-Lerp* | 57.1 | 34.8 | 57.0 | 37.4 | 37.1 | 64.4 | 64.6 | 35.8 | 45.9 | 41.5 |
Hybrid Expansion | 58.9 | 44.7 | 57.9 | 44.3 | 44.4 | 65.1 | 65.7 | 36.9 | 46.8 | 45.6 |
Control LLM* | 57.0 | 44.7 | 56.0 | 44.9 | 44.8 | 68.2 | 65.6 | 37.9 | 48.5 | 46.7 |
Explanation:
- CEval: Chinese Evaluation
- CEvalC: Chinese Evaluation (CoT - Chain of Thought)
- CMMLU: Chinese MMLU
- CMMLUC: Chinese MMLU (CoT)
- C-Avg: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
- BBH: BigBench Hard
- MLU: MMLU (Massive Multitask Language Understanding)
- MLUP: MMLU Pro
- O-Avg: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
- Overall: Combined average across all tasks
Full Parameter Tuning on Chinese-SynE
The following plot illustrates the Catastrophic Forgetting of full parameter tuning in terms of hidden states alignment drift.
- Downloads last month
- 2
Model tree for ControlLLM/Llama-3.1-8B-SynE-FPT
Base model
meta-llama/Llama-3.1-8BDatasets used to train ControlLLM/Llama-3.1-8B-SynE-FPT
Evaluation results
- exact_match,strict-match (meta_pretrain) on Pretraining Evaluation Datasetself-reported0.454
- exact_match,strict-match (meta_bbh_3shot_cot_pretrain) on Pretraining Evaluation Datasetself-reported0.648
- acc,none (meta_mmlu_5shot_pretrain) on Pretraining Evaluation Datasetself-reported0.649
- exact_match,strict-match (meta_mmlu_pro_5shot_pretrain) on Pretraining Evaluation Datasetself-reported0.350
- acc,none (ceval-valid) on Chinese Evaluation Datasetself-reported0.590
- exact_match,strict-match (ceval-valid-pretrain-cot_zh) on Chinese Evaluation Datasetself-reported0.402
- acc,none (cmmlu) on Chinese Evaluation Datasetself-reported0.602
- exact_match,strict-match (cmmlu_pretrain_cot_zh) on Chinese Evaluation Datasetself-reported0.443