hawei's picture
Add metadata and paper link (#1)
6c8b4d8 verified
---
license: llama3.1
datasets:
- survivi/Llama-3-SynE-Dataset
- hfl/stem_zh_instruction
- llamafactory/alpaca_zh
- llamafactory/alpaca_gpt4_zh
- hfl/ruozhiba_gpt4
- codingsteven/Llama-3-8B-chat
language:
- zh
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B
model-index:
- name: Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
results:
- task:
type: pretraining-evaluation
dataset:
type: mixed
name: Pretraining Evaluation Dataset
metrics:
- name: exact_match,strict-match (meta_pretrain)
type: exact_match
value: 0.458555789246616
stderr: 0.003519105746208811
verified: false
- name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
type: exact_match
value: 0.6442942712332975
stderr: 0.005933310420690264
verified: false
- name: acc,none (meta_mmlu_5shot_pretrain)
type: accuracy
value: 0.6464178891895741
stderr: 0.004034621567546711
verified: false
- name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
type: exact_match
value: 0.35804521276595747
stderr: 0.004370894189453768
verified: false
- task:
type: chinese-evaluation
dataset:
type: mixed
name: Chinese Evaluation Dataset
metrics:
- name: exact_match,strict-match (zh_pretrain_multishot)
type: exact_match
value: 0.37105507425742573
stderr: 0.004143191283994466
verified: false
- name: acc,none (ceval-valid)
type: accuracy
value: 0.5713224368499257
stderr: 0.01292052444857274
verified: false
- name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
type: exact_match
value: 0.34843982169390786
stderr: 0.01265919137729175
verified: false
- name: acc,none (cmmlu)
type: accuracy
value: 0.5689000172681747
stderr: 0.004489346390434928
verified: false
- name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
type: exact_match
value: 0.37368330167501296
stderr: 0.00438421288652232
verified: false
pipeline_tag: text-generation
library_name: transformers
---
# Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Lerp.
## Linked Paper
This model is associated with the paper: [Control LLM: Controlled Evolution for Intelligence Retention in LLM](https://huggingface.co/papers/2501.10979).
## Linked Open Source code - training, eval and benchmark
This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM).
## Evaluation Results
Here is an overview of the evaluation results and findings:
### Benchmark Results Table
The table below summarizes evaluation results across Chinese tasks and original capabilities.
| **Model** | **CEval** | **CEvalC** | **CMMLU** | **CMMLUC** | **C-Avg** | **BBH** | **MLU** | **MLUP** | **O-Avg** | **Overall** |
|--------------------|-----------|------------|-----------|------------|-----------|---------|---------|----------|-----------|-------------|
| Llama3.1-8B | 48.3 | 12.8 | 51.1 | 14.1 | 13.9 | 65.2 | 65.4 | 35.5 | 45.9 | 29.9 |
| Llama-3-SynE | 57.7 | 22.3 | 57.1 | 22.8 | 22.8 | 61.9 | 64.0 | 32.6 | 42.9 | 32.9 |
| Full Param Tune | 59.0 | 40.2 | **60.2** | 44.3 | 43.8 | 64.8 | 64.9 | 35.0 | 45.4 | 44.6 |
| Stack Expansion | 56.0 | 32.7 | 55.2 | 33.4 | 33.3 | 62.3 | 65.6 | 35.3 | 44.8 | 39.1 |
| **Concat-Lerp** | 57.1 | 34.8 | 57.0 | 37.4 | 37.1 | 64.4 | 64.6 | 35.8 | 45.9 | 41.5 |
| Hybrid Expansion | **58.9** | 44.7 | 57.9 | 44.3 | 44.4 | 65.1 | **65.7**| 36.9 | 46.8 | 45.6 |
| **Control LLM*** | 57.0 | **44.7** | 56.0 | **44.9** | **44.8** | **68.2**| 65.6 | **37.9** | **48.5** | **46.7** |
---
### Explanation:
- **CEval**: Chinese Evaluation
- **CEvalC**: Chinese Evaluation (CoT - Chain of Thought)
- **CMMLU**: Chinese MMLU
- **CMMLUC**: Chinese MMLU (CoT)
- **C-Avg**: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
- **BBH**: BigBench Hard
- **MLU**: MMLU (Massive Multitask Language Understanding)
- **MLUP**: MMLU Pro
- **O-Avg**: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
- **Overall**: Combined average across all tasks