hawei's picture
Add metadata and paper link (#1)
6c8b4d8 verified
metadata
license: llama3.1
datasets:
  - survivi/Llama-3-SynE-Dataset
  - hfl/stem_zh_instruction
  - llamafactory/alpaca_zh
  - llamafactory/alpaca_gpt4_zh
  - hfl/ruozhiba_gpt4
  - codingsteven/Llama-3-8B-chat
language:
  - zh
metrics:
  - accuracy
base_model:
  - meta-llama/Llama-3.1-8B
model-index:
  - name: Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
    results:
      - task:
          type: pretraining-evaluation
        dataset:
          type: mixed
          name: Pretraining Evaluation Dataset
        metrics:
          - name: exact_match,strict-match (meta_pretrain)
            type: exact_match
            value: 0.458555789246616
            stderr: 0.003519105746208811
            verified: false
          - name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
            type: exact_match
            value: 0.6442942712332975
            stderr: 0.005933310420690264
            verified: false
          - name: acc,none (meta_mmlu_5shot_pretrain)
            type: accuracy
            value: 0.6464178891895741
            stderr: 0.004034621567546711
            verified: false
          - name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
            type: exact_match
            value: 0.35804521276595747
            stderr: 0.004370894189453768
            verified: false
      - task:
          type: chinese-evaluation
        dataset:
          type: mixed
          name: Chinese Evaluation Dataset
        metrics:
          - name: exact_match,strict-match (zh_pretrain_multishot)
            type: exact_match
            value: 0.37105507425742573
            stderr: 0.004143191283994466
            verified: false
          - name: acc,none (ceval-valid)
            type: accuracy
            value: 0.5713224368499257
            stderr: 0.01292052444857274
            verified: false
          - name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
            type: exact_match
            value: 0.34843982169390786
            stderr: 0.01265919137729175
            verified: false
          - name: acc,none (cmmlu)
            type: accuracy
            value: 0.5689000172681747
            stderr: 0.004489346390434928
            verified: false
          - name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
            type: exact_match
            value: 0.37368330167501296
            stderr: 0.00438421288652232
            verified: false
pipeline_tag: text-generation
library_name: transformers

Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp

This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Lerp.

Linked Paper

This model is associated with the paper: Control LLM: Controlled Evolution for Intelligence Retention in LLM.

Linked Open Source code - training, eval and benchmark

This model is associated with the github: Control-LLM.

Evaluation Results

Here is an overview of the evaluation results and findings:

Benchmark Results Table

The table below summarizes evaluation results across Chinese tasks and original capabilities.

Model CEval CEvalC CMMLU CMMLUC C-Avg BBH MLU MLUP O-Avg Overall
Llama3.1-8B 48.3 12.8 51.1 14.1 13.9 65.2 65.4 35.5 45.9 29.9
Llama-3-SynE 57.7 22.3 57.1 22.8 22.8 61.9 64.0 32.6 42.9 32.9
Full Param Tune 59.0 40.2 60.2 44.3 43.8 64.8 64.9 35.0 45.4 44.6
Stack Expansion 56.0 32.7 55.2 33.4 33.3 62.3 65.6 35.3 44.8 39.1
Concat-Lerp 57.1 34.8 57.0 37.4 37.1 64.4 64.6 35.8 45.9 41.5
Hybrid Expansion 58.9 44.7 57.9 44.3 44.4 65.1 65.7 36.9 46.8 45.6
Control LLM* 57.0 44.7 56.0 44.9 44.8 68.2 65.6 37.9 48.5 46.7

Explanation:

  • CEval: Chinese Evaluation
  • CEvalC: Chinese Evaluation (CoT - Chain of Thought)
  • CMMLU: Chinese MMLU
  • CMMLUC: Chinese MMLU (CoT)
  • C-Avg: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
  • BBH: BigBench Hard
  • MLU: MMLU (Massive Multitask Language Understanding)
  • MLUP: MMLU Pro
  • O-Avg: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
  • Overall: Combined average across all tasks