metadata
license: llama3.1
datasets:
- survivi/Llama-3-SynE-Dataset
- hfl/stem_zh_instruction
- llamafactory/alpaca_zh
- llamafactory/alpaca_gpt4_zh
- hfl/ruozhiba_gpt4
- codingsteven/Llama-3-8B-chat
language:
- zh
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B
model-index:
- name: Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
results:
- task:
type: pretraining-evaluation
dataset:
type: mixed
name: Pretraining Evaluation Dataset
metrics:
- name: exact_match,strict-match (meta_pretrain)
type: exact_match
value: 0.458555789246616
stderr: 0.003519105746208811
verified: false
- name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
type: exact_match
value: 0.6442942712332975
stderr: 0.005933310420690264
verified: false
- name: acc,none (meta_mmlu_5shot_pretrain)
type: accuracy
value: 0.6464178891895741
stderr: 0.004034621567546711
verified: false
- name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
type: exact_match
value: 0.35804521276595747
stderr: 0.004370894189453768
verified: false
- task:
type: chinese-evaluation
dataset:
type: mixed
name: Chinese Evaluation Dataset
metrics:
- name: exact_match,strict-match (zh_pretrain_multishot)
type: exact_match
value: 0.37105507425742573
stderr: 0.004143191283994466
verified: false
- name: acc,none (ceval-valid)
type: accuracy
value: 0.5713224368499257
stderr: 0.01292052444857274
verified: false
- name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
type: exact_match
value: 0.34843982169390786
stderr: 0.01265919137729175
verified: false
- name: acc,none (cmmlu)
type: accuracy
value: 0.5689000172681747
stderr: 0.004489346390434928
verified: false
- name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
type: exact_match
value: 0.37368330167501296
stderr: 0.00438421288652232
verified: false
pipeline_tag: text-generation
library_name: transformers
Control-LLM-Llama3.1-8B-SynE-Concat16-Lerp
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Lerp.
Linked Paper
This model is associated with the paper: Control LLM: Controlled Evolution for Intelligence Retention in LLM.
Linked Open Source code - training, eval and benchmark
This model is associated with the github: Control-LLM.
Evaluation Results
Here is an overview of the evaluation results and findings:
Benchmark Results Table
The table below summarizes evaluation results across Chinese tasks and original capabilities.
Model | CEval | CEvalC | CMMLU | CMMLUC | C-Avg | BBH | MLU | MLUP | O-Avg | Overall |
---|---|---|---|---|---|---|---|---|---|---|
Llama3.1-8B | 48.3 | 12.8 | 51.1 | 14.1 | 13.9 | 65.2 | 65.4 | 35.5 | 45.9 | 29.9 |
Llama-3-SynE | 57.7 | 22.3 | 57.1 | 22.8 | 22.8 | 61.9 | 64.0 | 32.6 | 42.9 | 32.9 |
Full Param Tune | 59.0 | 40.2 | 60.2 | 44.3 | 43.8 | 64.8 | 64.9 | 35.0 | 45.4 | 44.6 |
Stack Expansion | 56.0 | 32.7 | 55.2 | 33.4 | 33.3 | 62.3 | 65.6 | 35.3 | 44.8 | 39.1 |
Concat-Lerp | 57.1 | 34.8 | 57.0 | 37.4 | 37.1 | 64.4 | 64.6 | 35.8 | 45.9 | 41.5 |
Hybrid Expansion | 58.9 | 44.7 | 57.9 | 44.3 | 44.4 | 65.1 | 65.7 | 36.9 | 46.8 | 45.6 |
Control LLM* | 57.0 | 44.7 | 56.0 | 44.9 | 44.8 | 68.2 | 65.6 | 37.9 | 48.5 | 46.7 |
Explanation:
- CEval: Chinese Evaluation
- CEvalC: Chinese Evaluation (CoT - Chain of Thought)
- CMMLU: Chinese MMLU
- CMMLUC: Chinese MMLU (CoT)
- C-Avg: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
- BBH: BigBench Hard
- MLU: MMLU (Massive Multitask Language Understanding)
- MLUP: MMLU Pro
- O-Avg: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
- Overall: Combined average across all tasks