hawei_LinkedIn
upload model weights and model card
01b29be
metadata
license: llama3.1
datasets:
  - survivi/Llama-3-SynE-Dataset
  - hfl/stem_zh_instruction
  - llamafactory/alpaca_zh
  - llamafactory/alpaca_gpt4_zh
  - hfl/ruozhiba_gpt4
  - codingsteven/Llama-3-8B-chat
language:
  - zh
base_model:
  - meta-llama/Llama-3.1-8B
model-index:
  - name: Control-LLM-Llama3.1-8B-SynE-Concat16-Dlerp
    results:
      - task:
          type: pretraining-evaluation
        dataset:
          type: mixed
          name: Pretraining Evaluation Dataset
        metrics:
          - name: exact_match,strict-match (meta_pretrain)
            type: exact_match
            value: 0.48514264142803215
            stderr: 0.003513307445696379
            verified: false
          - name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
            type: exact_match
            value: 0.6817693134695131
            stderr: 0.0057729694388110805
            verified: false
          - name: acc,none (meta_mmlu_5shot_pretrain)
            type: accuracy
            value: 0.65596068936049
            stderr: 0.0040090726054856874
            verified: false
          - name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
            type: exact_match
            value: 0.3787400265957447
            stderr: 0.004422383756050139
            verified: false
      - task:
          type: chinese-evaluation
        dataset:
          type: mixed
          name: Chinese Evaluation Dataset
        metrics:
          - name: exact_match,strict-match (zh_pretrain_multishot)
            type: exact_match
            value: 0.44848391089108913
            stderr: 0.004255614019851072
            verified: false
          - name: acc,none (ceval-valid)
            type: accuracy
            value: 0.5698365527488856
            stderr: 0.012893833892221353
            verified: false
          - name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
            type: exact_match
            value: 0.4472511144130758
            stderr: 0.013203606600472227
            verified: false
          - name: acc,none (cmmlu)
            type: accuracy
            value: 0.5602659298912105
            stderr: 0.0044928840587441605
            verified: false
          - name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
            type: exact_match
            value: 0.4486271801070627
            stderr: 0.00449553418468653
            verified: false

Control-LLM-Llama3.1-8B-SynE-Concat16-Dlerp

This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Dlerp.

Evaluation Results

Here is an overview of the evaluation results and findings:

Benchmark Results Table

The table below summarizes evaluation results across Chinese tasks and original capabilities.

Model CEval CEvalC CMMLU CMMLUC C-Avg BBH MLU MLUP O-Avg Overall
Llama3.1-8B 48.3 12.8 51.1 14.1 13.9 65.2 65.4 35.5 45.9 29.9
Llama-3-SynE 57.7 22.3 57.1 22.8 22.8 61.9 64.0 32.6 42.9 32.9
Full Param Tune 59.0 40.2 60.2 44.3 43.8 64.8 64.9 35.0 45.4 44.6
Stack Expansion 56.0 32.7 55.2 33.4 33.3 62.3 65.6 35.3 44.8 39.1
Concat-Lerp 57.1 34.8 57.0 37.4 37.1 64.4 64.6 35.8 45.9 41.5
Hybrid Expansion 58.9 44.7 57.9 44.3 44.4 65.1 65.7 36.9 46.8 45.6
Control LLM* 57.0 44.7 56.0 44.9 44.8 68.2 65.6 37.9 48.5 46.7

Explanation:

  • CEval: Chinese Evaluation
  • CEvalC: Chinese Evaluation (CoT - Chain of Thought)
  • CMMLU: Chinese MMLU
  • CMMLUC: Chinese MMLU (CoT)
  • C-Avg: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
  • BBH: BigBench Hard
  • MLU: MMLU (Massive Multitask Language Understanding)
  • MLUP: MMLU Pro
  • O-Avg: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
  • Overall: Combined average across all tasks