--- license: llama3.1 datasets: - survivi/Llama-3-SynE-Dataset - hfl/stem_zh_instruction - llamafactory/alpaca_zh - llamafactory/alpaca_gpt4_zh - hfl/ruozhiba_gpt4 - codingsteven/Llama-3-8B-chat language: - zh metrics: - accuracy base_model: - meta-llama/Llama-3.1-8B pipeline_tag: text-generation library_name: transformers model-index: - name: Control-LLM-Llama3.1-8B-SynE-Concat16-Dlerp results: - task: type: pretraining-evaluation dataset: type: mixed name: Pretraining Evaluation Dataset metrics: - name: exact_match,strict-match (meta_pretrain) type: exact_match value: 0.48514264142803215 stderr: 0.003513307445696379 verified: false - name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain) type: exact_match value: 0.6817693134695131 stderr: 0.0057729694388110805 verified: false - name: acc,none (meta_mmlu_5shot_pretrain) type: accuracy value: 0.65596068936049 stderr: 0.0040090726054856874 verified: false - name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain) type: exact_match value: 0.3787400265957447 stderr: 0.004422383756050139 verified: false - task: type: chinese-evaluation dataset: type: mixed name: Chinese Evaluation Dataset metrics: - name: exact_match,strict-match (zh_pretrain_multishot) type: exact_match value: 0.44848391089108913 stderr: 0.004255614019851072 verified: false - name: acc,none (ceval-valid) type: accuracy value: 0.5698365527488856 stderr: 0.012893833892221353 verified: false - name: exact_match,strict-match (ceval-valid-pretrain-cot_zh) type: exact_match value: 0.4472511144130758 stderr: 0.013203606600472227 verified: false - name: acc,none (cmmlu) type: accuracy value: 0.5602659298912105 stderr: 0.0044928840587441605 verified: false - name: exact_match,strict-match (cmmlu_pretrain_cot_zh) type: exact_match value: 0.4486271801070627 stderr: 0.00449553418468653 verified: false --- # Control-LLM-Llama3.1-8B-SynE-Concat16-Dlerp This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Concat16-Dlerp, as described in [Control LLM: Controlled Evolution for Intelligence Retention in LLM](https://huggingface.co/papers/2501.10979). ## Linked Paper This model is associated with the paper: [Control-LLM](https://arxiv.org/abs/2410.14745). ## Linked Open Source code - training, eval and benchmark This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM). ## Evaluation Results Here is an overview of the evaluation results and findings: ### Benchmark Results Table The table below summarizes evaluation results across Chinese tasks and original capabilities. | **Model** | **CEval** | **CEvalC** | **CMMLU** | **CMMLUC** | **C-Avg** | **BBH** | **MLU** | **MLUP** | **O-Avg** | **Overall** | |--------------------|-----------|------------|-----------|------------|-----------|---------|---------|----------|-----------|-------------| | Llama3.1-8B | 48.3 | 12.8 | 51.1 | 14.1 | 13.9 | 65.2 | 65.4 | 35.5 | 45.9 | 29.9 | | Llama-3-SynE | 57.7 | 22.3 | 57.1 | 22.8 | 22.8 | 61.9 | 64.0 | 32.6 | 42.9 | 32.9 | | Full Param Tune | 59.0 | 40.2 | **60.2** | 44.3 | 43.8 | 64.8 | 64.9 | 35.0 | 45.4 | 44.6 | | Stack Expansion | 56.0 | 32.7 | 55.2 | 33.4 | 33.3 | 62.3 | 65.6 | 35.3 | 44.8 | 39.1 | | Concat-Lerp | 57.1 | 34.8 | 57.0 | 37.4 | 37.1 | 64.4 | 64.6 | 35.8 | 45.9 | 41.5 | | Hybrid Expansion | **58.9** | 44.7 | 57.9 | 44.3 | 44.4 | 65.1 | **65.7**| 36.9 | 46.8 | 45.6 | | **Control LLM*** | 57.0 | **44.7** | 56.0 | **44.9** | **44.8** | **68.2**| 65.6 | **37.9** | **48.5** | **46.7** | --- ### Explanation: - **CEval**: Chinese Evaluation - **CEvalC**: Chinese Evaluation (CoT - Chain of Thought) - **CMMLU**: Chinese MMLU - **CMMLUC**: Chinese MMLU (CoT) - **C-Avg**: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC - **BBH**: BigBench Hard - **MLU**: MMLU (Massive Multitask Language Understanding) - **MLUP**: MMLU Pro - **O-Avg**: Original Capability - Size Weighted Average across BBH, MLU, and MLUP - **Overall**: Combined average across all tasks