metadata
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: google/gemma-2b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: gemma-2b-zephyr-sft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.88
name: normalized accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 72.63
name: normalized accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.2
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.96
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.85
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.09
name: accuracy
Model Card for Gemma 2B Zephyr SFT
We trained the google/gemma-2b with deita-10k-v0-sft. We carefully selected the hyper-parameters and masked the user tokens during training to achieve the best supervised fine-tuning performance.
Model description
- Model type: A 2.5B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Gemma Terms of Use
- Finetuned from model: google/gemma-2b
License
This model has the same license as the original Gemma model collection
OpenLLM Leaderboard Performance
Models | Avg. | ARC-C | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8k |
---|---|---|---|---|---|---|---|
google/gemma-2b | 46.37 | 48.38 | 71.77 | 41.77 | 33.08 | 66.77 | 16.91 |
google/gemma-2b-it | 42.75 | 43.94 | 62.70 | 37.65 | 45.82 | 60.93 | 5.46 |
wandb/gemma-2b-zephyr-sft | 47.18 | 49.74 | 72.38 | 41.37 | 34.42 | 66.93 | 18.27 |
wandb/gemma-2b-zephyr-dpo | 46.92 | 49.66 | 72.23 | 41.13 | 34.47 | 66.54 | 17.51 |
Columbia-NLP/gemma-2b-zephyr-sft | 48.75 | 51.80 | 72.63 | 42.20 | 41.96 | 63.85 | 20.09 |
Columbia-NLP/gemma-2b-zephyr-dpo | 49.14 | 52.22 | 73.11 | 42.55 | 42.64 | 64.40 | 19.94 |
MT-Bench
GPT-4-0125-preview as Judge
Model | Total | Coding | Extraction | Humanities | Math | Reasoning | Roleplay | STEM | Writing |
---|---|---|---|---|---|---|---|---|---|
google/gemma-2b-it | 4.71 | 2.95 | 4.35 | 6.15 | 2.90 | 3.50 | 5.60 | 5.50 | 6.70 |
wandb/gemma-2b-zephyr-sft | 4.03 | 3.10 | 3.15 | 5.00 | 2.70 | 2.65 | 5.10 | 4.80 | 5.75 |
wandb/gemma-2b-zephyr-dpo | 4.06 | 2.80 | 2.90 | 5.55 | 2.65 | 2.70 | 5.20 | 4.80 | 5.85 |
Columbia-NLP/gemma-2b-zephyr-sft | 4.34 | 3.10 | 3.70 | 6.25 | 2.65 | 2.70 | 5.55 | 5.25 | 5.50 |
Columbia-NLP/gemma-2b-zephyr-dpo | 4.75 | 3.50 | 4.05 | 6.75 | 3.30 | 3.70 | 5.85 | 5.40 | 5.53 |