Model Card for Gemma 2B Zephyr SFT
We trained the google/gemma-2b with deita-10k-v0-sft. We carefully selected the hyper-parameters and masked the user tokens during training to achieve the best supervised fine-tuning performance.
Model description
- Model type: A 2.5B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Gemma Terms of Use
- Finetuned from model: google/gemma-2b
License
This model has the same license as the original Gemma model collection
OpenLLM Leaderboard Performance
Models | Avg. | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8k |
---|---|---|---|---|---|---|---|
google/gemma-2b | 46.37 | 48.38 | 71.77 | 41.77 | 33.08 | 66.77 | 16.91 |
google/gemma-2b-it | 42.75 | 43.94 | 62.70 | 37.65 | 45.82 | 60.93 | 5.46 |
wandb/gemma-2b-zephyr-sft | 47.18 | 49.74 | 72.38 | 41.37 | 34.42 | 66.93 | 18.27 |
wandb/gemma-2b-zephyr-dpo | 46.92 | 49.66 | 72.23 | 41.13 | 34.47 | 66.54 | 17.51 |
Columbia-NLP/gemma-2b-zephyr-sft | 48.75 | 51.80 | 72.63 | 42.20 | 41.96 | 63.85 | 20.09 |
Columbia-NLP/gemma-2b-zephyr-dpo | 49.14 | 52.22 | 73.11 | 42.55 | 42.64 | 64.40 | 19.94 |
MT-Bench
GPT-4-0125-preview as Judge
Model | Total | Coding | Extraction | Humanities | Math | Reasoning | Roleplay | STEM | Writing |
---|---|---|---|---|---|---|---|---|---|
google/gemma-2b-it | 4.71 | 2.95 | 4.35 | 6.15 | 2.90 | 3.50 | 5.60 | 5.50 | 6.70 |
wandb/gemma-2b-zephyr-sft | 4.03 | 3.10 | 3.15 | 5.00 | 2.70 | 2.65 | 5.10 | 4.80 | 5.75 |
wandb/gemma-2b-zephyr-dpo | 4.06 | 2.80 | 2.90 | 5.55 | 2.65 | 2.70 | 5.20 | 4.80 | 5.85 |
Columbia-NLP/gemma-2b-zephyr-sft | 4.34 | 3.10 | 3.70 | 6.25 | 2.65 | 2.70 | 5.55 | 5.25 | 5.50 |
Columbia-NLP/gemma-2b-zephyr-dpo | 4.75 | 3.50 | 4.05 | 6.75 | 3.30 | 3.70 | 5.85 | 5.40 | 5.53 |
- Downloads last month
- 117
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Columbia-NLP/gemma-2b-zephyr-sft
Dataset used to train Columbia-NLP/gemma-2b-zephyr-sft
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set self-reported51.880
- normalized accuracy on HellaSwag (10-Shot)validation set self-reported72.630
- accuracy on MMLU (5-Shot)test set self-reported42.200
- mc2 on TruthfulQA (0-shot)validation set self-reported41.960
- accuracy on Winogrande (5-shot)validation set self-reported63.850
- accuracy on GSM8k (5-shot)test set self-reported20.090