|
--- |
|
base_model: Snowflake/snowflake-arctic-embed-m |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:600 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: How can organizations tailor their measurement of GAI risks based |
|
on specific characteristics? |
|
sentences: |
|
- "3 \nthe abuse, misuse, and unsafe repurposing by humans (adversarial or not),\ |
|
\ and others result \nfrom interactions between a human and an AI system. \n\ |
|
• \nTime scale: GAI risks may materialize abruptly or across extended periods.\ |
|
\ Examples include \nimmediate (and/or prolonged) emotional harm and potential\ |
|
\ risks to physical safety due to the \ndistribution of harmful deepfake images,\ |
|
\ or the long-term effect of disinformation on societal \ntrust in public institutions." |
|
- "12 \nCSAM. Even when trained on “clean” data, increasingly capable GAI models\ |
|
\ can synthesize or produce \nsynthetic NCII and CSAM. Websites, mobile apps,\ |
|
\ and custom-built models that generate synthetic NCII \nhave moved from niche\ |
|
\ internet forums to mainstream, automated, and scaled online businesses. \n\ |
|
Trustworthy AI Characteristics: Fair with Harmful Bias Managed, Safe, Privacy\ |
|
\ Enhanced \n2.12. \nValue Chain and Component Integration" |
|
- "case context. \nOrganizations may choose to tailor how they measure GAI risks\ |
|
\ based on these characteristics. They may \nadditionally wish to allocate risk\ |
|
\ management resources relative to the severity and likelihood of \nnegative impacts,\ |
|
\ including where and how these risks manifest, and their direct and material\ |
|
\ impacts \nharms in the context of GAI use. Mitigations for model or system level\ |
|
\ risks may differ from mitigations \nfor use-case or ecosystem level risks." |
|
- source_sentence: What methods are suggested for measuring the reliability of content |
|
authentication techniques in the context of content provenance? |
|
sentences: |
|
- "updates. \nInformation Integrity; Data Privacy \nMG-3.2-003 \nDocument sources\ |
|
\ and types of training data and their origins, potential biases \npresent in\ |
|
\ the data related to the GAI application and its content provenance, \narchitecture,\ |
|
\ training process of the pre-trained model including information on \nhyperparameters,\ |
|
\ training duration, and any fine-tuning or retrieval-augmented \ngeneration processes\ |
|
\ applied. \nInformation Integrity; Harmful Bias \nand Homogenization; Intellectual\ |
|
\ \nProperty" |
|
- "Security \nMS-2.7-005 \nMeasure reliability of content authentication methods,\ |
|
\ such as watermarking, \ncryptographic signatures, digital fingerprints, as well\ |
|
\ as access controls, \nconformity assessment, and model integrity verification,\ |
|
\ which can help support \nthe effective implementation of content provenance techniques.\ |
|
\ Evaluate the \nrate of false positives and false negatives in content provenance,\ |
|
\ as well as true \npositives and true negatives for verification. \nInformation\ |
|
\ Integrity \nMS-2.7-006" |
|
- "GV-1.6-003 \nIn addition to general model, governance, and risk information,\ |
|
\ consider the \nfollowing items in GAI system inventory entries: Data provenance\ |
|
\ information \n(e.g., source, signatures, versioning, watermarks); Known issues\ |
|
\ reported from \ninternal bug tracking or external information sharing resources\ |
|
\ (e.g., AI incident \ndatabase, AVID, CVE, NVD, or OECD AI incident monitor);\ |
|
\ Human oversight roles \nand responsibilities; Special rights and considerations\ |
|
\ for intellectual property," |
|
- source_sentence: What are the suggested actions an organization can take to manage |
|
GAI risks? |
|
sentences: |
|
- "Information Integrity; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation\ |
|
\ or Capabilities \nGV-1.3-007 Devise a plan to halt development or deployment\ |
|
\ of a GAI system that poses \nunacceptable negative risk. \nCBRN Information\ |
|
\ and Capability; \nInformation Security; Information \nIntegrity \nAI Actor Tasks:\ |
|
\ Governance and Oversight \n \nGOVERN 1.4: The risk management process and its\ |
|
\ outcomes are established through transparent policies, procedures, and other" |
|
- "match the statistical properties of real-world data without disclosing personally\ |
|
\ \nidentifiable information or contributing to homogenization. \nData Privacy;\ |
|
\ Intellectual Property; \nInformation Integrity; \nConfabulation; Harmful Bias\ |
|
\ and \nHomogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\ |
|
\ Governance and Oversight, Operation and Monitoring \n \nMANAGE 2.3: Procedures\ |
|
\ are followed to respond to and recover from a previously unknown risk when it\ |
|
\ is identified. \nAction ID" |
|
- "• \nSuggested Action: Steps an organization or AI actor can take to manage GAI\ |
|
\ risks. \n• \nGAI Risks: Tags linking suggested actions with relevant GAI risks.\ |
|
\ \n• \nAI Actor Tasks: Pertinent AI Actor Tasks for each subcategory. Not every\ |
|
\ AI Actor Task listed will \napply to every suggested action in the subcategory\ |
|
\ (i.e., some apply to AI development and \nothers apply to AI deployment). \n\ |
|
The tables below begin with the AI RMF subcategory, shaded in blue, followed by\ |
|
\ suggested actions." |
|
- source_sentence: How can harmful bias and homogenization be addressed in the context |
|
of human-AI configuration? |
|
sentences: |
|
- "on GAI, apply general fairness metrics (e.g., demographic parity, equalized odds,\ |
|
\ \nequal opportunity, statistical hypothesis tests), to the pipeline or business\ |
|
\ \noutcome where appropriate; Custom, context-specific metrics developed in \n\ |
|
collaboration with domain experts and affected communities; Measurements of \n\ |
|
the prevalence of denigration in generated content in deployment (e.g., sub-\n\ |
|
sampling a fraction of traffic and manually annotating denigrating content). \n\ |
|
Harmful Bias and Homogenization;" |
|
- "MP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's\ |
|
\ synthetic \ndata generation capabilities for potential misuse or vulnerabilities.\ |
|
\ \nInformation Integrity; Information \nSecurity \nMP-5.1-002 \nIdentify potential\ |
|
\ content provenance harms of GAI, such as misinformation or \ndisinformation,\ |
|
\ deepfakes, including NCII, or tampered content. Enumerate and \nrank risks based\ |
|
\ on their likelihood and potential impact, and determine how well" |
|
- "MS-1.3-002 \nEngage in internal and external evaluations, GAI red-teaming, impact\ |
|
\ \nassessments, or other structured human feedback exercises in consultation\ |
|
\ \nwith representative AI Actors with expertise and familiarity in the context\ |
|
\ of \nuse, and/or who are representative of the populations associated with the\ |
|
\ \ncontext of use. \nHuman-AI Configuration; Harmful \nBias and Homogenization;\ |
|
\ CBRN \nInformation or Capabilities \nMS-1.3-003" |
|
- source_sentence: How can structured human feedback exercises, such as GAI red-teaming, |
|
contribute to GAI risk measurement and management? |
|
sentences: |
|
- "rank risks based on their likelihood and potential impact, and determine how\ |
|
\ well \nprovenance solutions address specific risks and/or harms. \nInformation\ |
|
\ Integrity; Dangerous, \nViolent, or Hateful Content; \nObscene, Degrading, and/or\ |
|
\ \nAbusive Content \nMP-5.1-003 \nConsider disclosing use of GAI to end users\ |
|
\ in relevant contexts, while considering \nthe objective of disclosure, the context\ |
|
\ of use, the likelihood and magnitude of the" |
|
- "15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable\ |
|
\ use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information\ |
|
\ or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias\ |
|
\ \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005\ |
|
\ \nMaintain an updated hierarchy of identified and expected GAI risks connected\ |
|
\ to \ncontexts of GAI model advancement and use, potentially including specialized\ |
|
\ risk" |
|
- "AI-generated content, for example by employing techniques like chaos \nengineering\ |
|
\ and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine\ |
|
\ use cases, contexts of use, capabilities, and negative impacts where \nstructured\ |
|
\ human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for\ |
|
\ GAI risk measurement and management based on the context of \nuse. \nHarmful\ |
|
\ Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009" |
|
model-index: |
|
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.85 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.96 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.98 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.85 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.31999999999999995 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19599999999999995 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.85 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.96 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.98 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9342942871848772 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9124166666666668 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9124166666666668 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.85 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.96 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.98 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 1.0 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.85 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.31999999999999995 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.19599999999999995 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.09999999999999998 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.85 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.96 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.98 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 1.0 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.9342942871848772 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.9124166666666668 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.9124166666666668 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Cheselle/finetuned-arctic-sentence") |
|
# Run inference |
|
sentences = [ |
|
'How can structured human feedback exercises, such as GAI red-teaming, contribute to GAI risk measurement and management?', |
|
'AI-generated content, for example by employing techniques like chaos \nengineering and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine use cases, contexts of use, capabilities, and negative impacts where \nstructured human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for GAI risk measurement and management based on the context of \nuse. \nHarmful Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009', |
|
'15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005 \nMaintain an updated hierarchy of identified and expected GAI risks connected to \ncontexts of GAI model advancement and use, potentially including specialized risk', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.85 | |
|
| cosine_accuracy@3 | 0.96 | |
|
| cosine_accuracy@5 | 0.98 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.85 | |
|
| cosine_precision@3 | 0.32 | |
|
| cosine_precision@5 | 0.196 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.85 | |
|
| cosine_recall@3 | 0.96 | |
|
| cosine_recall@5 | 0.98 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9343 | |
|
| cosine_mrr@10 | 0.9124 | |
|
| **cosine_map@100** | **0.9124** | |
|
| dot_accuracy@1 | 0.85 | |
|
| dot_accuracy@3 | 0.96 | |
|
| dot_accuracy@5 | 0.98 | |
|
| dot_accuracy@10 | 1.0 | |
|
| dot_precision@1 | 0.85 | |
|
| dot_precision@3 | 0.32 | |
|
| dot_precision@5 | 0.196 | |
|
| dot_precision@10 | 0.1 | |
|
| dot_recall@1 | 0.85 | |
|
| dot_recall@3 | 0.96 | |
|
| dot_recall@5 | 0.98 | |
|
| dot_recall@10 | 1.0 | |
|
| dot_ndcg@10 | 0.9343 | |
|
| dot_mrr@10 | 0.9124 | |
|
| dot_map@100 | 0.9124 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 600 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 600 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 21.05 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 91.74 tokens</li><li>max: 335 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> | |
|
| <code>Where can the NIST AI 600-1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> | |
|
| <code>What is the title of the publication released by NIST in July 2024 regarding AI risk management?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | cosine_map@100 | |
|
|:------:|:----:|:--------------:| |
|
| 1.0 | 38 | 0.9033 | |
|
| 1.3158 | 50 | 0.9067 | |
|
| 2.0 | 76 | 0.9124 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |