Cheselle commited on
Commit
baa7639
1 Parent(s): 7a4ecb1

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,641 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:600
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: How can organizations tailor their measurement of GAI risks based
46
+ on specific characteristics?
47
+ sentences:
48
+ - "3 \nthe abuse, misuse, and unsafe repurposing by humans (adversarial or not),\
49
+ \ and others result \nfrom interactions between a human and an AI system. \n\
50
+ • \nTime scale: GAI risks may materialize abruptly or across extended periods.\
51
+ \ Examples include \nimmediate (and/or prolonged) emotional harm and potential\
52
+ \ risks to physical safety due to the \ndistribution of harmful deepfake images,\
53
+ \ or the long-term effect of disinformation on societal \ntrust in public institutions."
54
+ - "12 \nCSAM. Even when trained on “clean” data, increasingly capable GAI models\
55
+ \ can synthesize or produce \nsynthetic NCII and CSAM. Websites, mobile apps,\
56
+ \ and custom-built models that generate synthetic NCII \nhave moved from niche\
57
+ \ internet forums to mainstream, automated, and scaled online businesses. \n\
58
+ Trustworthy AI Characteristics: Fair with Harmful Bias Managed, Safe, Privacy\
59
+ \ Enhanced \n2.12. \nValue Chain and Component Integration"
60
+ - "case context. \nOrganizations may choose to tailor how they measure GAI risks\
61
+ \ based on these characteristics. They may \nadditionally wish to allocate risk\
62
+ \ management resources relative to the severity and likelihood of \nnegative impacts,\
63
+ \ including where and how these risks manifest, and their direct and material\
64
+ \ impacts \nharms in the context of GAI use. Mitigations for model or system level\
65
+ \ risks may differ from mitigations \nfor use-case or ecosystem level risks."
66
+ - source_sentence: What methods are suggested for measuring the reliability of content
67
+ authentication techniques in the context of content provenance?
68
+ sentences:
69
+ - "updates. \nInformation Integrity; Data Privacy \nMG-3.2-003 \nDocument sources\
70
+ \ and types of training data and their origins, potential biases \npresent in\
71
+ \ the data related to the GAI application and its content provenance, \narchitecture,\
72
+ \ training process of the pre-trained model including information on \nhyperparameters,\
73
+ \ training duration, and any fine-tuning or retrieval-augmented \ngeneration processes\
74
+ \ applied. \nInformation Integrity; Harmful Bias \nand Homogenization; Intellectual\
75
+ \ \nProperty"
76
+ - "Security \nMS-2.7-005 \nMeasure reliability of content authentication methods,\
77
+ \ such as watermarking, \ncryptographic signatures, digital fingerprints, as well\
78
+ \ as access controls, \nconformity assessment, and model integrity verification,\
79
+ \ which can help support \nthe effective implementation of content provenance techniques.\
80
+ \ Evaluate the \nrate of false positives and false negatives in content provenance,\
81
+ \ as well as true \npositives and true negatives for verification. \nInformation\
82
+ \ Integrity \nMS-2.7-006"
83
+ - "GV-1.6-003 \nIn addition to general model, governance, and risk information,\
84
+ \ consider the \nfollowing items in GAI system inventory entries: Data provenance\
85
+ \ information \n(e.g., source, signatures, versioning, watermarks); Known issues\
86
+ \ reported from \ninternal bug tracking or external information sharing resources\
87
+ \ (e.g., AI incident \ndatabase, AVID, CVE, NVD, or OECD AI incident monitor);\
88
+ \ Human oversight roles \nand responsibilities; Special rights and considerations\
89
+ \ for intellectual property,"
90
+ - source_sentence: What are the suggested actions an organization can take to manage
91
+ GAI risks?
92
+ sentences:
93
+ - "Information Integrity; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation\
94
+ \ or Capabilities \nGV-1.3-007 Devise a plan to halt development or deployment\
95
+ \ of a GAI system that poses \nunacceptable negative risk. \nCBRN Information\
96
+ \ and Capability; \nInformation Security; Information \nIntegrity \nAI Actor Tasks:\
97
+ \ Governance and Oversight \n \nGOVERN 1.4: The risk management process and its\
98
+ \ outcomes are established through transparent policies, procedures, and other"
99
+ - "match the statistical properties of real-world data without disclosing personally\
100
+ \ \nidentifiable information or contributing to homogenization. \nData Privacy;\
101
+ \ Intellectual Property; \nInformation Integrity; \nConfabulation; Harmful Bias\
102
+ \ and \nHomogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\
103
+ \ Governance and Oversight, Operation and Monitoring \n \nMANAGE 2.3: Procedures\
104
+ \ are followed to respond to and recover from a previously unknown risk when it\
105
+ \ is identified. \nAction ID"
106
+ - "• \nSuggested Action: Steps an organization or AI actor can take to manage GAI\
107
+ \ risks. \n• \nGAI Risks: Tags linking suggested actions with relevant GAI risks.\
108
+ \ \n• \nAI Actor Tasks: Pertinent AI Actor Tasks for each subcategory. Not every\
109
+ \ AI Actor Task listed will \napply to every suggested action in the subcategory\
110
+ \ (i.e., some apply to AI development and \nothers apply to AI deployment). \n\
111
+ The tables below begin with the AI RMF subcategory, shaded in blue, followed by\
112
+ \ suggested actions."
113
+ - source_sentence: How can harmful bias and homogenization be addressed in the context
114
+ of human-AI configuration?
115
+ sentences:
116
+ - "on GAI, apply general fairness metrics (e.g., demographic parity, equalized odds,\
117
+ \ \nequal opportunity, statistical hypothesis tests), to the pipeline or business\
118
+ \ \noutcome where appropriate; Custom, context-specific metrics developed in \n\
119
+ collaboration with domain experts and affected communities; Measurements of \n\
120
+ the prevalence of denigration in generated content in deployment (e.g., sub-\n\
121
+ sampling a fraction of traffic and manually annotating denigrating content). \n\
122
+ Harmful Bias and Homogenization;"
123
+ - "MP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's\
124
+ \ synthetic \ndata generation capabilities for potential misuse or vulnerabilities.\
125
+ \ \nInformation Integrity; Information \nSecurity \nMP-5.1-002 \nIdentify potential\
126
+ \ content provenance harms of GAI, such as misinformation or \ndisinformation,\
127
+ \ deepfakes, including NCII, or tampered content. Enumerate and \nrank risks based\
128
+ \ on their likelihood and potential impact, and determine how well"
129
+ - "MS-1.3-002 \nEngage in internal and external evaluations, GAI red-teaming, impact\
130
+ \ \nassessments, or other structured human feedback exercises in consultation\
131
+ \ \nwith representative AI Actors with expertise and familiarity in the context\
132
+ \ of \nuse, and/or who are representative of the populations associated with the\
133
+ \ \ncontext of use. \nHuman-AI Configuration; Harmful \nBias and Homogenization;\
134
+ \ CBRN \nInformation or Capabilities \nMS-1.3-003"
135
+ - source_sentence: How can structured human feedback exercises, such as GAI red-teaming,
136
+ contribute to GAI risk measurement and management?
137
+ sentences:
138
+ - "rank risks based on their likelihood and potential impact, and determine how\
139
+ \ well \nprovenance solutions address specific risks and/or harms. \nInformation\
140
+ \ Integrity; Dangerous, \nViolent, or Hateful Content; \nObscene, Degrading, and/or\
141
+ \ \nAbusive Content \nMP-5.1-003 \nConsider disclosing use of GAI to end users\
142
+ \ in relevant contexts, while considering \nthe objective of disclosure, the context\
143
+ \ of use, the likelihood and magnitude of the"
144
+ - "15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable\
145
+ \ use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information\
146
+ \ or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias\
147
+ \ \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005\
148
+ \ \nMaintain an updated hierarchy of identified and expected GAI risks connected\
149
+ \ to \ncontexts of GAI model advancement and use, potentially including specialized\
150
+ \ risk"
151
+ - "AI-generated content, for example by employing techniques like chaos \nengineering\
152
+ \ and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine\
153
+ \ use cases, contexts of use, capabilities, and negative impacts where \nstructured\
154
+ \ human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for\
155
+ \ GAI risk measurement and management based on the context of \nuse. \nHarmful\
156
+ \ Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009"
157
+ model-index:
158
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
159
+ results:
160
+ - task:
161
+ type: information-retrieval
162
+ name: Information Retrieval
163
+ dataset:
164
+ name: Unknown
165
+ type: unknown
166
+ metrics:
167
+ - type: cosine_accuracy@1
168
+ value: 0.85
169
+ name: Cosine Accuracy@1
170
+ - type: cosine_accuracy@3
171
+ value: 0.96
172
+ name: Cosine Accuracy@3
173
+ - type: cosine_accuracy@5
174
+ value: 0.98
175
+ name: Cosine Accuracy@5
176
+ - type: cosine_accuracy@10
177
+ value: 1.0
178
+ name: Cosine Accuracy@10
179
+ - type: cosine_precision@1
180
+ value: 0.85
181
+ name: Cosine Precision@1
182
+ - type: cosine_precision@3
183
+ value: 0.31999999999999995
184
+ name: Cosine Precision@3
185
+ - type: cosine_precision@5
186
+ value: 0.19599999999999995
187
+ name: Cosine Precision@5
188
+ - type: cosine_precision@10
189
+ value: 0.09999999999999998
190
+ name: Cosine Precision@10
191
+ - type: cosine_recall@1
192
+ value: 0.85
193
+ name: Cosine Recall@1
194
+ - type: cosine_recall@3
195
+ value: 0.96
196
+ name: Cosine Recall@3
197
+ - type: cosine_recall@5
198
+ value: 0.98
199
+ name: Cosine Recall@5
200
+ - type: cosine_recall@10
201
+ value: 1.0
202
+ name: Cosine Recall@10
203
+ - type: cosine_ndcg@10
204
+ value: 0.9342942871848772
205
+ name: Cosine Ndcg@10
206
+ - type: cosine_mrr@10
207
+ value: 0.9124166666666668
208
+ name: Cosine Mrr@10
209
+ - type: cosine_map@100
210
+ value: 0.9124166666666668
211
+ name: Cosine Map@100
212
+ - type: dot_accuracy@1
213
+ value: 0.85
214
+ name: Dot Accuracy@1
215
+ - type: dot_accuracy@3
216
+ value: 0.96
217
+ name: Dot Accuracy@3
218
+ - type: dot_accuracy@5
219
+ value: 0.98
220
+ name: Dot Accuracy@5
221
+ - type: dot_accuracy@10
222
+ value: 1.0
223
+ name: Dot Accuracy@10
224
+ - type: dot_precision@1
225
+ value: 0.85
226
+ name: Dot Precision@1
227
+ - type: dot_precision@3
228
+ value: 0.31999999999999995
229
+ name: Dot Precision@3
230
+ - type: dot_precision@5
231
+ value: 0.19599999999999995
232
+ name: Dot Precision@5
233
+ - type: dot_precision@10
234
+ value: 0.09999999999999998
235
+ name: Dot Precision@10
236
+ - type: dot_recall@1
237
+ value: 0.85
238
+ name: Dot Recall@1
239
+ - type: dot_recall@3
240
+ value: 0.96
241
+ name: Dot Recall@3
242
+ - type: dot_recall@5
243
+ value: 0.98
244
+ name: Dot Recall@5
245
+ - type: dot_recall@10
246
+ value: 1.0
247
+ name: Dot Recall@10
248
+ - type: dot_ndcg@10
249
+ value: 0.9342942871848772
250
+ name: Dot Ndcg@10
251
+ - type: dot_mrr@10
252
+ value: 0.9124166666666668
253
+ name: Dot Mrr@10
254
+ - type: dot_map@100
255
+ value: 0.9124166666666668
256
+ name: Dot Map@100
257
+ ---
258
+
259
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
260
+
261
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
262
+
263
+ ## Model Details
264
+
265
+ ### Model Description
266
+ - **Model Type:** Sentence Transformer
267
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
268
+ - **Maximum Sequence Length:** 512 tokens
269
+ - **Output Dimensionality:** 768 tokens
270
+ - **Similarity Function:** Cosine Similarity
271
+ <!-- - **Training Dataset:** Unknown -->
272
+ <!-- - **Language:** Unknown -->
273
+ <!-- - **License:** Unknown -->
274
+
275
+ ### Model Sources
276
+
277
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
278
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
279
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
280
+
281
+ ### Full Model Architecture
282
+
283
+ ```
284
+ SentenceTransformer(
285
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
286
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
287
+ (2): Normalize()
288
+ )
289
+ ```
290
+
291
+ ## Usage
292
+
293
+ ### Direct Usage (Sentence Transformers)
294
+
295
+ First install the Sentence Transformers library:
296
+
297
+ ```bash
298
+ pip install -U sentence-transformers
299
+ ```
300
+
301
+ Then you can load this model and run inference.
302
+ ```python
303
+ from sentence_transformers import SentenceTransformer
304
+
305
+ # Download from the 🤗 Hub
306
+ model = SentenceTransformer("Cheselle/finetuned-arctic-sentence")
307
+ # Run inference
308
+ sentences = [
309
+ 'How can structured human feedback exercises, such as GAI red-teaming, contribute to GAI risk measurement and management?',
310
+ 'AI-generated content, for example by employing techniques like chaos \nengineering and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine use cases, contexts of use, capabilities, and negative impacts where \nstructured human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for GAI risk measurement and management based on the context of \nuse. \nHarmful Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009',
311
+ '15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005 \nMaintain an updated hierarchy of identified and expected GAI risks connected to \ncontexts of GAI model advancement and use, potentially including specialized risk',
312
+ ]
313
+ embeddings = model.encode(sentences)
314
+ print(embeddings.shape)
315
+ # [3, 768]
316
+
317
+ # Get the similarity scores for the embeddings
318
+ similarities = model.similarity(embeddings, embeddings)
319
+ print(similarities.shape)
320
+ # [3, 3]
321
+ ```
322
+
323
+ <!--
324
+ ### Direct Usage (Transformers)
325
+
326
+ <details><summary>Click to see the direct usage in Transformers</summary>
327
+
328
+ </details>
329
+ -->
330
+
331
+ <!--
332
+ ### Downstream Usage (Sentence Transformers)
333
+
334
+ You can finetune this model on your own dataset.
335
+
336
+ <details><summary>Click to expand</summary>
337
+
338
+ </details>
339
+ -->
340
+
341
+ <!--
342
+ ### Out-of-Scope Use
343
+
344
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
345
+ -->
346
+
347
+ ## Evaluation
348
+
349
+ ### Metrics
350
+
351
+ #### Information Retrieval
352
+
353
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
354
+
355
+ | Metric | Value |
356
+ |:--------------------|:-----------|
357
+ | cosine_accuracy@1 | 0.85 |
358
+ | cosine_accuracy@3 | 0.96 |
359
+ | cosine_accuracy@5 | 0.98 |
360
+ | cosine_accuracy@10 | 1.0 |
361
+ | cosine_precision@1 | 0.85 |
362
+ | cosine_precision@3 | 0.32 |
363
+ | cosine_precision@5 | 0.196 |
364
+ | cosine_precision@10 | 0.1 |
365
+ | cosine_recall@1 | 0.85 |
366
+ | cosine_recall@3 | 0.96 |
367
+ | cosine_recall@5 | 0.98 |
368
+ | cosine_recall@10 | 1.0 |
369
+ | cosine_ndcg@10 | 0.9343 |
370
+ | cosine_mrr@10 | 0.9124 |
371
+ | **cosine_map@100** | **0.9124** |
372
+ | dot_accuracy@1 | 0.85 |
373
+ | dot_accuracy@3 | 0.96 |
374
+ | dot_accuracy@5 | 0.98 |
375
+ | dot_accuracy@10 | 1.0 |
376
+ | dot_precision@1 | 0.85 |
377
+ | dot_precision@3 | 0.32 |
378
+ | dot_precision@5 | 0.196 |
379
+ | dot_precision@10 | 0.1 |
380
+ | dot_recall@1 | 0.85 |
381
+ | dot_recall@3 | 0.96 |
382
+ | dot_recall@5 | 0.98 |
383
+ | dot_recall@10 | 1.0 |
384
+ | dot_ndcg@10 | 0.9343 |
385
+ | dot_mrr@10 | 0.9124 |
386
+ | dot_map@100 | 0.9124 |
387
+
388
+ <!--
389
+ ## Bias, Risks and Limitations
390
+
391
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
392
+ -->
393
+
394
+ <!--
395
+ ### Recommendations
396
+
397
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
398
+ -->
399
+
400
+ ## Training Details
401
+
402
+ ### Training Dataset
403
+
404
+ #### Unnamed Dataset
405
+
406
+
407
+ * Size: 600 training samples
408
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
409
+ * Approximate statistics based on the first 600 samples:
410
+ | | sentence_0 | sentence_1 |
411
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
412
+ | type | string | string |
413
+ | details | <ul><li>min: 11 tokens</li><li>mean: 21.05 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 91.74 tokens</li><li>max: 335 tokens</li></ul> |
414
+ * Samples:
415
+ | sentence_0 | sentence_1 |
416
+ |:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
417
+ | <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
418
+ | <code>Where can the NIST AI 600-1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
419
+ | <code>What is the title of the publication released by NIST in July 2024 regarding AI risk management?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
420
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
421
+ ```json
422
+ {
423
+ "loss": "MultipleNegativesRankingLoss",
424
+ "matryoshka_dims": [
425
+ 768,
426
+ 512,
427
+ 256,
428
+ 128,
429
+ 64
430
+ ],
431
+ "matryoshka_weights": [
432
+ 1,
433
+ 1,
434
+ 1,
435
+ 1,
436
+ 1
437
+ ],
438
+ "n_dims_per_step": -1
439
+ }
440
+ ```
441
+
442
+ ### Training Hyperparameters
443
+ #### Non-Default Hyperparameters
444
+
445
+ - `eval_strategy`: steps
446
+ - `per_device_train_batch_size`: 16
447
+ - `per_device_eval_batch_size`: 16
448
+ - `multi_dataset_batch_sampler`: round_robin
449
+
450
+ #### All Hyperparameters
451
+ <details><summary>Click to expand</summary>
452
+
453
+ - `overwrite_output_dir`: False
454
+ - `do_predict`: False
455
+ - `eval_strategy`: steps
456
+ - `prediction_loss_only`: True
457
+ - `per_device_train_batch_size`: 16
458
+ - `per_device_eval_batch_size`: 16
459
+ - `per_gpu_train_batch_size`: None
460
+ - `per_gpu_eval_batch_size`: None
461
+ - `gradient_accumulation_steps`: 1
462
+ - `eval_accumulation_steps`: None
463
+ - `torch_empty_cache_steps`: None
464
+ - `learning_rate`: 5e-05
465
+ - `weight_decay`: 0.0
466
+ - `adam_beta1`: 0.9
467
+ - `adam_beta2`: 0.999
468
+ - `adam_epsilon`: 1e-08
469
+ - `max_grad_norm`: 1
470
+ - `num_train_epochs`: 3
471
+ - `max_steps`: -1
472
+ - `lr_scheduler_type`: linear
473
+ - `lr_scheduler_kwargs`: {}
474
+ - `warmup_ratio`: 0.0
475
+ - `warmup_steps`: 0
476
+ - `log_level`: passive
477
+ - `log_level_replica`: warning
478
+ - `log_on_each_node`: True
479
+ - `logging_nan_inf_filter`: True
480
+ - `save_safetensors`: True
481
+ - `save_on_each_node`: False
482
+ - `save_only_model`: False
483
+ - `restore_callback_states_from_checkpoint`: False
484
+ - `no_cuda`: False
485
+ - `use_cpu`: False
486
+ - `use_mps_device`: False
487
+ - `seed`: 42
488
+ - `data_seed`: None
489
+ - `jit_mode_eval`: False
490
+ - `use_ipex`: False
491
+ - `bf16`: False
492
+ - `fp16`: False
493
+ - `fp16_opt_level`: O1
494
+ - `half_precision_backend`: auto
495
+ - `bf16_full_eval`: False
496
+ - `fp16_full_eval`: False
497
+ - `tf32`: None
498
+ - `local_rank`: 0
499
+ - `ddp_backend`: None
500
+ - `tpu_num_cores`: None
501
+ - `tpu_metrics_debug`: False
502
+ - `debug`: []
503
+ - `dataloader_drop_last`: False
504
+ - `dataloader_num_workers`: 0
505
+ - `dataloader_prefetch_factor`: None
506
+ - `past_index`: -1
507
+ - `disable_tqdm`: False
508
+ - `remove_unused_columns`: True
509
+ - `label_names`: None
510
+ - `load_best_model_at_end`: False
511
+ - `ignore_data_skip`: False
512
+ - `fsdp`: []
513
+ - `fsdp_min_num_params`: 0
514
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
515
+ - `fsdp_transformer_layer_cls_to_wrap`: None
516
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
517
+ - `deepspeed`: None
518
+ - `label_smoothing_factor`: 0.0
519
+ - `optim`: adamw_torch
520
+ - `optim_args`: None
521
+ - `adafactor`: False
522
+ - `group_by_length`: False
523
+ - `length_column_name`: length
524
+ - `ddp_find_unused_parameters`: None
525
+ - `ddp_bucket_cap_mb`: None
526
+ - `ddp_broadcast_buffers`: False
527
+ - `dataloader_pin_memory`: True
528
+ - `dataloader_persistent_workers`: False
529
+ - `skip_memory_metrics`: True
530
+ - `use_legacy_prediction_loop`: False
531
+ - `push_to_hub`: False
532
+ - `resume_from_checkpoint`: None
533
+ - `hub_model_id`: None
534
+ - `hub_strategy`: every_save
535
+ - `hub_private_repo`: False
536
+ - `hub_always_push`: False
537
+ - `gradient_checkpointing`: False
538
+ - `gradient_checkpointing_kwargs`: None
539
+ - `include_inputs_for_metrics`: False
540
+ - `eval_do_concat_batches`: True
541
+ - `fp16_backend`: auto
542
+ - `push_to_hub_model_id`: None
543
+ - `push_to_hub_organization`: None
544
+ - `mp_parameters`:
545
+ - `auto_find_batch_size`: False
546
+ - `full_determinism`: False
547
+ - `torchdynamo`: None
548
+ - `ray_scope`: last
549
+ - `ddp_timeout`: 1800
550
+ - `torch_compile`: False
551
+ - `torch_compile_backend`: None
552
+ - `torch_compile_mode`: None
553
+ - `dispatch_batches`: None
554
+ - `split_batches`: None
555
+ - `include_tokens_per_second`: False
556
+ - `include_num_input_tokens_seen`: False
557
+ - `neftune_noise_alpha`: None
558
+ - `optim_target_modules`: None
559
+ - `batch_eval_metrics`: False
560
+ - `eval_on_start`: False
561
+ - `eval_use_gather_object`: False
562
+ - `batch_sampler`: batch_sampler
563
+ - `multi_dataset_batch_sampler`: round_robin
564
+
565
+ </details>
566
+
567
+ ### Training Logs
568
+ | Epoch | Step | cosine_map@100 |
569
+ |:------:|:----:|:--------------:|
570
+ | 1.0 | 38 | 0.9033 |
571
+ | 1.3158 | 50 | 0.9067 |
572
+ | 2.0 | 76 | 0.9124 |
573
+
574
+
575
+ ### Framework Versions
576
+ - Python: 3.10.12
577
+ - Sentence Transformers: 3.1.1
578
+ - Transformers: 4.44.2
579
+ - PyTorch: 2.4.1+cu121
580
+ - Accelerate: 0.34.2
581
+ - Datasets: 3.0.0
582
+ - Tokenizers: 0.19.1
583
+
584
+ ## Citation
585
+
586
+ ### BibTeX
587
+
588
+ #### Sentence Transformers
589
+ ```bibtex
590
+ @inproceedings{reimers-2019-sentence-bert,
591
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
592
+ author = "Reimers, Nils and Gurevych, Iryna",
593
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
594
+ month = "11",
595
+ year = "2019",
596
+ publisher = "Association for Computational Linguistics",
597
+ url = "https://arxiv.org/abs/1908.10084",
598
+ }
599
+ ```
600
+
601
+ #### MatryoshkaLoss
602
+ ```bibtex
603
+ @misc{kusupati2024matryoshka,
604
+ title={Matryoshka Representation Learning},
605
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
606
+ year={2024},
607
+ eprint={2205.13147},
608
+ archivePrefix={arXiv},
609
+ primaryClass={cs.LG}
610
+ }
611
+ ```
612
+
613
+ #### MultipleNegativesRankingLoss
614
+ ```bibtex
615
+ @misc{henderson2017efficient,
616
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
617
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
618
+ year={2017},
619
+ eprint={1705.00652},
620
+ archivePrefix={arXiv},
621
+ primaryClass={cs.CL}
622
+ }
623
+ ```
624
+
625
+ <!--
626
+ ## Glossary
627
+
628
+ *Clearly define terms in order to be accessible across audiences.*
629
+ -->
630
+
631
+ <!--
632
+ ## Model Card Authors
633
+
634
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
635
+ -->
636
+
637
+ <!--
638
+ ## Model Card Contact
639
+
640
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
641
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_arctic_sentence",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0526dac2ed2ed7fce8885cdc712f58e87f21390739d6509d7252d04cef25c17
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff