|
--- |
|
base_model: aubmindlab/bert-base-arabertv2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: arabertv2-fully-supervised-arabic-propaganda |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabertv2-fully-supervised-arabic-propaganda |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3894 |
|
- Accuracy: 0.9262 |
|
- Precision: 0.6042 |
|
- Recall: 0.7073 |
|
- F1: 0.6517 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.4919 | 1.0 | 20 | 0.5087 | 0.8381 | 0.3516 | 0.7805 | 0.4848 | |
|
| 0.3633 | 2.0 | 40 | 0.4010 | 0.8333 | 0.3474 | 0.8049 | 0.4853 | |
|
| 0.2017 | 3.0 | 60 | 0.3635 | 0.9 | 0.4918 | 0.7317 | 0.5882 | |
|
| 0.3071 | 4.0 | 80 | 0.3981 | 0.9333 | 0.6444 | 0.7073 | 0.6744 | |
|
| 0.145 | 5.0 | 100 | 0.3894 | 0.9262 | 0.6042 | 0.7073 | 0.6517 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|