File size: 1,996 Bytes
9f517a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: aubmindlab/bert-base-arabertv2
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: arabertv2-fully-supervised-arabic-propaganda
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arabertv2-fully-supervised-arabic-propaganda

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3894
- Accuracy: 0.9262
- Precision: 0.6042
- Recall: 0.7073
- F1: 0.6517

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4919        | 1.0   | 20   | 0.5087          | 0.8381   | 0.3516    | 0.7805 | 0.4848 |
| 0.3633        | 2.0   | 40   | 0.4010          | 0.8333   | 0.3474    | 0.8049 | 0.4853 |
| 0.2017        | 3.0   | 60   | 0.3635          | 0.9      | 0.4918    | 0.7317 | 0.5882 |
| 0.3071        | 4.0   | 80   | 0.3981          | 0.9333   | 0.6444    | 0.7073 | 0.6744 |
| 0.145         | 5.0   | 100  | 0.3894          | 0.9262   | 0.6042    | 0.7073 | 0.6517 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1