plus2_model / README.md
BenjaminKUL's picture
End of training
7805f07
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: plus2_model
    results: []

plus2_model

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7698
  • Eader: {'precision': 0.3232876712328767, 'recall': 0.2532188841201717, 'f1': 0.28399518652226236, 'number': 466}
  • Nswer: {'precision': 0.43698252069917204, 'recall': 0.38183279742765275, 'f1': 0.4075504075504076, 'number': 1244}
  • Uestion: {'precision': 0.392904953145917, 'recall': 0.425670775924583, 'f1': 0.40863209189001043, 'number': 1379}
  • Overall Precision: 0.4005
  • Overall Recall: 0.3820
  • Overall F1: 0.3911
  • Overall Accuracy: 0.5776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1902 0.7 200 0.2840 {'precision': 0.20205479452054795, 'recall': 0.12660944206008584, 'f1': 0.15567282321899734, 'number': 466} {'precision': 0.2560738581146744, 'recall': 0.42363344051446944, 'f1': 0.3192004845548152, 'number': 1244} {'precision': 0.3292753623188406, 'recall': 0.41189267585206674, 'f1': 0.36597938144329895, 'number': 1379} 0.2832 0.3736 0.3222 0.6408
0.1315 1.4 400 0.3785 {'precision': 0.2557544757033248, 'recall': 0.2145922746781116, 'f1': 0.23337222870478413, 'number': 466} {'precision': 0.3143491124260355, 'recall': 0.34163987138263663, 'f1': 0.327426810477658, 'number': 1244} {'precision': 0.31990924560408396, 'recall': 0.40899202320522116, 'f1': 0.35900700190961177, 'number': 1379} 0.3106 0.3525 0.3303 0.5741
0.1117 2.11 600 0.5260 {'precision': 0.33003300330033003, 'recall': 0.2145922746781116, 'f1': 0.2600780234070221, 'number': 466} {'precision': 0.37556973564266183, 'recall': 0.3311897106109325, 'f1': 0.35198633062793677, 'number': 1244} {'precision': 0.37993311036789296, 'recall': 0.41189267585206674, 'f1': 0.39526791927627, 'number': 1379} 0.3731 0.3496 0.3610 0.5467
0.0824 2.81 800 0.4716 {'precision': 0.29289940828402367, 'recall': 0.21244635193133046, 'f1': 0.2462686567164179, 'number': 466} {'precision': 0.38620689655172413, 'recall': 0.36012861736334406, 'f1': 0.3727121464226289, 'number': 1244} {'precision': 0.36801541425818884, 'recall': 0.41551849166062366, 'f1': 0.3903269754768393, 'number': 1379} 0.3666 0.3626 0.3646 0.5599
0.0654 3.51 1000 0.3955 {'precision': 0.3408360128617363, 'recall': 0.22746781115879827, 'f1': 0.2728442728442728, 'number': 466} {'precision': 0.3290094339622642, 'recall': 0.44855305466237944, 'f1': 0.37959183673469393, 'number': 1244} {'precision': 0.3595634692705342, 'recall': 0.45395213923132705, 'f1': 0.4012820512820513, 'number': 1379} 0.3442 0.4176 0.3774 0.6413
0.0701 4.21 1200 0.5372 {'precision': 0.3501577287066246, 'recall': 0.23819742489270387, 'f1': 0.2835249042145594, 'number': 466} {'precision': 0.39559543230016314, 'recall': 0.38987138263665594, 'f1': 0.3927125506072874, 'number': 1244} {'precision': 0.3765156349712827, 'recall': 0.4278462654097172, 'f1': 0.40054310930074677, 'number': 1379} 0.3814 0.3839 0.3826 0.5792
0.048 4.91 1400 0.7393 {'precision': 0.37168141592920356, 'recall': 0.18025751072961374, 'f1': 0.24277456647398846, 'number': 466} {'precision': 0.4155972359328727, 'recall': 0.3384244372990354, 'f1': 0.3730615861763403, 'number': 1244} {'precision': 0.39614855570839064, 'recall': 0.4176939811457578, 'f1': 0.4066360748323332, 'number': 1379} 0.4014 0.3500 0.3739 0.5258
0.0372 5.61 1600 0.6617 {'precision': 0.34726688102893893, 'recall': 0.2317596566523605, 'f1': 0.277992277992278, 'number': 466} {'precision': 0.390325271059216, 'recall': 0.3762057877813505, 'f1': 0.38313548915268114, 'number': 1244} {'precision': 0.39173228346456695, 'recall': 0.43292240754169686, 'f1': 0.4112986565621771, 'number': 1379} 0.3866 0.3797 0.3831 0.5713
0.0347 6.32 1800 0.7866 {'precision': 0.3680297397769517, 'recall': 0.21244635193133046, 'f1': 0.2693877551020408, 'number': 466} {'precision': 0.42815814850530376, 'recall': 0.35691318327974275, 'f1': 0.38930293730819815, 'number': 1244} {'precision': 0.39893617021276595, 'recall': 0.43509789702683105, 'f1': 0.4162330905306972, 'number': 1379} 0.4068 0.3700 0.3875 0.5454
0.0278 7.02 2000 0.6686 {'precision': 0.34110787172011664, 'recall': 0.2510729613733906, 'f1': 0.2892459826946848, 'number': 466} {'precision': 0.4066115702479339, 'recall': 0.3954983922829582, 'f1': 0.40097799511002447, 'number': 1244} {'precision': 0.39158163265306123, 'recall': 0.4452501812907904, 'f1': 0.4166949440108585, 'number': 1379} 0.3919 0.3959 0.3939 0.6009
0.0233 7.72 2200 0.7673 {'precision': 0.2876712328767123, 'recall': 0.2703862660944206, 'f1': 0.2787610619469027, 'number': 466} {'precision': 0.4287020109689214, 'recall': 0.3770096463022508, 'f1': 0.4011976047904192, 'number': 1244} {'precision': 0.38976109215017063, 'recall': 0.41406816533720087, 'f1': 0.4015471167369901, 'number': 1379} 0.3891 0.3775 0.3832 0.5676
0.0205 8.42 2400 0.7698 {'precision': 0.3232876712328767, 'recall': 0.2532188841201717, 'f1': 0.28399518652226236, 'number': 466} {'precision': 0.43698252069917204, 'recall': 0.38183279742765275, 'f1': 0.4075504075504076, 'number': 1244} {'precision': 0.392904953145917, 'recall': 0.425670775924583, 'f1': 0.40863209189001043, 'number': 1379} 0.4005 0.3820 0.3911 0.5776

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0.dev20230810
  • Datasets 2.14.4
  • Tokenizers 0.14.1