BenjaminKUL
commited on
Commit
•
7805f07
1
Parent(s):
6c15e5c
End of training
Browse files- README.md +75 -0
- added_tokens.json +7 -0
- merges.txt +0 -0
- preprocessor_config.json +26 -0
- pytorch_model.bin +1 -1
- special_tokens_map.json +9 -0
- tokenizer.json +0 -0
- tokenizer_config.json +79 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: SCUT-DLVCLab/lilt-roberta-en-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: plus2_model
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# plus2_model
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.7698
|
19 |
+
- Eader: {'precision': 0.3232876712328767, 'recall': 0.2532188841201717, 'f1': 0.28399518652226236, 'number': 466}
|
20 |
+
- Nswer: {'precision': 0.43698252069917204, 'recall': 0.38183279742765275, 'f1': 0.4075504075504076, 'number': 1244}
|
21 |
+
- Uestion: {'precision': 0.392904953145917, 'recall': 0.425670775924583, 'f1': 0.40863209189001043, 'number': 1379}
|
22 |
+
- Overall Precision: 0.4005
|
23 |
+
- Overall Recall: 0.3820
|
24 |
+
- Overall F1: 0.3911
|
25 |
+
- Overall Accuracy: 0.5776
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 4
|
46 |
+
- eval_batch_size: 4
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- training_steps: 2500
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 0.1902 | 0.7 | 200 | 0.2840 | {'precision': 0.20205479452054795, 'recall': 0.12660944206008584, 'f1': 0.15567282321899734, 'number': 466} | {'precision': 0.2560738581146744, 'recall': 0.42363344051446944, 'f1': 0.3192004845548152, 'number': 1244} | {'precision': 0.3292753623188406, 'recall': 0.41189267585206674, 'f1': 0.36597938144329895, 'number': 1379} | 0.2832 | 0.3736 | 0.3222 | 0.6408 |
|
57 |
+
| 0.1315 | 1.4 | 400 | 0.3785 | {'precision': 0.2557544757033248, 'recall': 0.2145922746781116, 'f1': 0.23337222870478413, 'number': 466} | {'precision': 0.3143491124260355, 'recall': 0.34163987138263663, 'f1': 0.327426810477658, 'number': 1244} | {'precision': 0.31990924560408396, 'recall': 0.40899202320522116, 'f1': 0.35900700190961177, 'number': 1379} | 0.3106 | 0.3525 | 0.3303 | 0.5741 |
|
58 |
+
| 0.1117 | 2.11 | 600 | 0.5260 | {'precision': 0.33003300330033003, 'recall': 0.2145922746781116, 'f1': 0.2600780234070221, 'number': 466} | {'precision': 0.37556973564266183, 'recall': 0.3311897106109325, 'f1': 0.35198633062793677, 'number': 1244} | {'precision': 0.37993311036789296, 'recall': 0.41189267585206674, 'f1': 0.39526791927627, 'number': 1379} | 0.3731 | 0.3496 | 0.3610 | 0.5467 |
|
59 |
+
| 0.0824 | 2.81 | 800 | 0.4716 | {'precision': 0.29289940828402367, 'recall': 0.21244635193133046, 'f1': 0.2462686567164179, 'number': 466} | {'precision': 0.38620689655172413, 'recall': 0.36012861736334406, 'f1': 0.3727121464226289, 'number': 1244} | {'precision': 0.36801541425818884, 'recall': 0.41551849166062366, 'f1': 0.3903269754768393, 'number': 1379} | 0.3666 | 0.3626 | 0.3646 | 0.5599 |
|
60 |
+
| 0.0654 | 3.51 | 1000 | 0.3955 | {'precision': 0.3408360128617363, 'recall': 0.22746781115879827, 'f1': 0.2728442728442728, 'number': 466} | {'precision': 0.3290094339622642, 'recall': 0.44855305466237944, 'f1': 0.37959183673469393, 'number': 1244} | {'precision': 0.3595634692705342, 'recall': 0.45395213923132705, 'f1': 0.4012820512820513, 'number': 1379} | 0.3442 | 0.4176 | 0.3774 | 0.6413 |
|
61 |
+
| 0.0701 | 4.21 | 1200 | 0.5372 | {'precision': 0.3501577287066246, 'recall': 0.23819742489270387, 'f1': 0.2835249042145594, 'number': 466} | {'precision': 0.39559543230016314, 'recall': 0.38987138263665594, 'f1': 0.3927125506072874, 'number': 1244} | {'precision': 0.3765156349712827, 'recall': 0.4278462654097172, 'f1': 0.40054310930074677, 'number': 1379} | 0.3814 | 0.3839 | 0.3826 | 0.5792 |
|
62 |
+
| 0.048 | 4.91 | 1400 | 0.7393 | {'precision': 0.37168141592920356, 'recall': 0.18025751072961374, 'f1': 0.24277456647398846, 'number': 466} | {'precision': 0.4155972359328727, 'recall': 0.3384244372990354, 'f1': 0.3730615861763403, 'number': 1244} | {'precision': 0.39614855570839064, 'recall': 0.4176939811457578, 'f1': 0.4066360748323332, 'number': 1379} | 0.4014 | 0.3500 | 0.3739 | 0.5258 |
|
63 |
+
| 0.0372 | 5.61 | 1600 | 0.6617 | {'precision': 0.34726688102893893, 'recall': 0.2317596566523605, 'f1': 0.277992277992278, 'number': 466} | {'precision': 0.390325271059216, 'recall': 0.3762057877813505, 'f1': 0.38313548915268114, 'number': 1244} | {'precision': 0.39173228346456695, 'recall': 0.43292240754169686, 'f1': 0.4112986565621771, 'number': 1379} | 0.3866 | 0.3797 | 0.3831 | 0.5713 |
|
64 |
+
| 0.0347 | 6.32 | 1800 | 0.7866 | {'precision': 0.3680297397769517, 'recall': 0.21244635193133046, 'f1': 0.2693877551020408, 'number': 466} | {'precision': 0.42815814850530376, 'recall': 0.35691318327974275, 'f1': 0.38930293730819815, 'number': 1244} | {'precision': 0.39893617021276595, 'recall': 0.43509789702683105, 'f1': 0.4162330905306972, 'number': 1379} | 0.4068 | 0.3700 | 0.3875 | 0.5454 |
|
65 |
+
| 0.0278 | 7.02 | 2000 | 0.6686 | {'precision': 0.34110787172011664, 'recall': 0.2510729613733906, 'f1': 0.2892459826946848, 'number': 466} | {'precision': 0.4066115702479339, 'recall': 0.3954983922829582, 'f1': 0.40097799511002447, 'number': 1244} | {'precision': 0.39158163265306123, 'recall': 0.4452501812907904, 'f1': 0.4166949440108585, 'number': 1379} | 0.3919 | 0.3959 | 0.3939 | 0.6009 |
|
66 |
+
| 0.0233 | 7.72 | 2200 | 0.7673 | {'precision': 0.2876712328767123, 'recall': 0.2703862660944206, 'f1': 0.2787610619469027, 'number': 466} | {'precision': 0.4287020109689214, 'recall': 0.3770096463022508, 'f1': 0.4011976047904192, 'number': 1244} | {'precision': 0.38976109215017063, 'recall': 0.41406816533720087, 'f1': 0.4015471167369901, 'number': 1379} | 0.3891 | 0.3775 | 0.3832 | 0.5676 |
|
67 |
+
| 0.0205 | 8.42 | 2400 | 0.7698 | {'precision': 0.3232876712328767, 'recall': 0.2532188841201717, 'f1': 0.28399518652226236, 'number': 466} | {'precision': 0.43698252069917204, 'recall': 0.38183279742765275, 'f1': 0.4075504075504076, 'number': 1244} | {'precision': 0.392904953145917, 'recall': 0.425670775924583, 'f1': 0.40863209189001043, 'number': 1379} | 0.4005 | 0.3820 | 0.3911 | 0.5776 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.34.0
|
73 |
+
- Pytorch 2.1.0.dev20230810
|
74 |
+
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.14.1
|
added_tokens.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 2,
|
3 |
+
"<mask>": 50264,
|
4 |
+
"<pad>": 1,
|
5 |
+
"<s>": 0,
|
6 |
+
"<unk>": 3
|
7 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "LayoutLMv3ImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"ocr_lang": null,
|
18 |
+
"processor_class": "LayoutLMv3Processor",
|
19 |
+
"resample": 2,
|
20 |
+
"rescale_factor": 0.00392156862745098,
|
21 |
+
"size": {
|
22 |
+
"height": 224,
|
23 |
+
"width": 224
|
24 |
+
},
|
25 |
+
"tesseract_config": ""
|
26 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 520802378
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac3545471af714f3134afe46d2b2bacee35e5213e6d741274adeaa21f10aa877
|
3 |
size 520802378
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": "<mask>",
|
6 |
+
"pad_token": "<pad>",
|
7 |
+
"sep_token": "</s>",
|
8 |
+
"unk_token": "<unk>"
|
9 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"additional_special_tokens": [],
|
46 |
+
"bos_token": "<s>",
|
47 |
+
"clean_up_tokenization_spaces": true,
|
48 |
+
"cls_token": "<s>",
|
49 |
+
"cls_token_box": [
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0,
|
53 |
+
0
|
54 |
+
],
|
55 |
+
"eos_token": "</s>",
|
56 |
+
"errors": "replace",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"model_max_length": 512,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "<pad>",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv3Processor",
|
69 |
+
"sep_token": "</s>",
|
70 |
+
"sep_token_box": [
|
71 |
+
0,
|
72 |
+
0,
|
73 |
+
0,
|
74 |
+
0
|
75 |
+
],
|
76 |
+
"tokenizer_class": "LayoutLMv3Tokenizer",
|
77 |
+
"trim_offsets": true,
|
78 |
+
"unk_token": "<unk>"
|
79 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|