new_model / README.md
BenjaminKUL's picture
End of training
2cb6094
|
raw
history blame
7.59 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: new_model
    results: []

new_model

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0292
  • Answer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10}
  • Header: {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17}
  • Question: {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17}
  • Overall Precision: 0.0556
  • Overall Recall: 0.0455
  • Overall F1: 0.0500
  • Overall Accuracy: 0.6578

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1533 3.92 200 0.0173 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} 0.0 0.0 0.0 0.5989
0.0443 7.84 400 0.0137 {'precision': 0.09090909090909091, 'recall': 0.1, 'f1': 0.09523809523809525, 'number': 10} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} 0.0164 0.0227 0.0190 0.6203
0.0194 11.76 600 0.0162 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.2222222222222222, 'recall': 0.11764705882352941, 'f1': 0.15384615384615383, 'number': 17} {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} 0.1154 0.0682 0.0857 0.6417
0.0089 15.69 800 0.0186 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.06666666666666667, 'recall': 0.058823529411764705, 'f1': 0.0625, 'number': 17} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} 0.0278 0.0227 0.0250 0.6684
0.0036 19.61 1000 0.0264 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17} {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17} 0.0556 0.0455 0.0500 0.6578
0.0031 23.53 1200 0.0200 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.1111111111111111, 'recall': 0.11764705882352941, 'f1': 0.11428571428571428, 'number': 17} {'precision': 0.05263157894736842, 'recall': 0.058823529411764705, 'f1': 0.05555555555555555, 'number': 17} 0.0732 0.0682 0.0706 0.6791
0.0015 27.45 1400 0.0222 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.05, 'recall': 0.058823529411764705, 'f1': 0.05405405405405405, 'number': 17} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} 0.0196 0.0227 0.0211 0.6631
0.0011 31.37 1600 0.0249 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} {'precision': 0.045454545454545456, 'recall': 0.058823529411764705, 'f1': 0.05128205128205128, 'number': 17} 0.0408 0.0455 0.0430 0.6845
0.0006 35.29 1800 0.0243 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} 0.0213 0.0227 0.0220 0.6952
0.0004 39.22 2000 0.0290 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} 0.0488 0.0455 0.0471 0.6578
0.0002 43.14 2200 0.0288 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} 0.0488 0.0455 0.0471 0.6578
0.0002 47.06 2400 0.0292 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17} {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17} 0.0556 0.0455 0.0500 0.6578

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.1.0.dev20230810
  • Datasets 2.14.4
  • Tokenizers 0.11.0