BenjaminKUL commited on
Commit
2cb6094
·
1 Parent(s): 709204d

End of training

Browse files
README.md CHANGED
@@ -2,8 +2,6 @@
2
  license: mit
3
  tags:
4
  - generated_from_trainer
5
- datasets:
6
- - funsd-layoutlmv3
7
  model-index:
8
  - name: new_model
9
  results: []
@@ -14,16 +12,16 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # new_model
16
 
17
- This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.5095
20
- - Answer: {'precision': 0.8368479467258602, 'recall': 0.9228886168910648, 'f1': 0.8777648428405123, 'number': 817}
21
- - Header: {'precision': 0.5333333333333333, 'recall': 0.5378151260504201, 'f1': 0.5355648535564853, 'number': 119}
22
- - Question: {'precision': 0.8907407407407407, 'recall': 0.89322191272052, 'f1': 0.8919796012980993, 'number': 1077}
23
- - Overall Precision: 0.8472
24
- - Overall Recall: 0.8843
25
- - Overall F1: 0.8653
26
- - Overall Accuracy: 0.7922
27
 
28
  ## Model description
29
 
@@ -52,20 +50,20 @@ The following hyperparameters were used during training:
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
- | 0.1542 | 3.51 | 200 | 0.2369 | {'precision': 0.7753846153846153, 'recall': 0.9253365973072215, 'f1': 0.8437500000000001, 'number': 817} | {'precision': 0.4166666666666667, 'recall': 0.21008403361344538, 'f1': 0.2793296089385475, 'number': 119} | {'precision': 0.8449744463373083, 'recall': 0.9210770659238626, 'f1': 0.8813860506441582, 'number': 1077} | 0.8026 | 0.8808 | 0.8399 | 0.7940 |
58
- | 0.0493 | 7.02 | 400 | 0.2901 | {'precision': 0.8056133056133056, 'recall': 0.9485924112607099, 'f1': 0.8712759977515458, 'number': 817} | {'precision': 0.45614035087719296, 'recall': 0.4369747899159664, 'f1': 0.44635193133047213, 'number': 119} | {'precision': 0.888673765730881, 'recall': 0.8523676880222841, 'f1': 0.8701421800947867, 'number': 1077} | 0.8274 | 0.8669 | 0.8467 | 0.8010 |
59
- | 0.0214 | 10.53 | 600 | 0.3571 | {'precision': 0.8139013452914798, 'recall': 0.8886168910648715, 'f1': 0.8496196606202459, 'number': 817} | {'precision': 0.4186046511627907, 'recall': 0.6050420168067226, 'f1': 0.4948453608247423, 'number': 119} | {'precision': 0.8652946679139383, 'recall': 0.8588672237697307, 'f1': 0.8620689655172413, 'number': 1077} | 0.8078 | 0.8559 | 0.8312 | 0.7907 |
60
- | 0.0112 | 14.04 | 800 | 0.4018 | {'precision': 0.8484455958549223, 'recall': 0.8017135862913096, 'f1': 0.8244178728760226, 'number': 817} | {'precision': 0.45, 'recall': 0.6050420168067226, 'f1': 0.5161290322580645, 'number': 119} | {'precision': 0.8385689354275742, 'recall': 0.8922934076137419, 'f1': 0.8645973909131804, 'number': 1077} | 0.8123 | 0.8385 | 0.8252 | 0.7872 |
61
- | 0.0058 | 17.54 | 1000 | 0.4571 | {'precision': 0.8466666666666667, 'recall': 0.9326805385556916, 'f1': 0.8875946418171229, 'number': 817} | {'precision': 0.6621621621621622, 'recall': 0.4117647058823529, 'f1': 0.5077720207253885, 'number': 119} | {'precision': 0.8809738503155996, 'recall': 0.9071494893221913, 'f1': 0.8938700823421775, 'number': 1077} | 0.8584 | 0.8882 | 0.8730 | 0.7944 |
62
- | 0.0031 | 21.05 | 1200 | 0.4573 | {'precision': 0.8208469055374593, 'recall': 0.9253365973072215, 'f1': 0.8699654775604143, 'number': 817} | {'precision': 0.5727272727272728, 'recall': 0.5294117647058824, 'f1': 0.5502183406113538, 'number': 119} | {'precision': 0.8799266727772685, 'recall': 0.8913649025069638, 'f1': 0.8856088560885608, 'number': 1077} | 0.8384 | 0.8838 | 0.8605 | 0.7891 |
63
- | 0.0019 | 24.56 | 1400 | 0.4631 | {'precision': 0.8372352285395763, 'recall': 0.9192166462668299, 'f1': 0.8763127187864644, 'number': 817} | {'precision': 0.559322033898305, 'recall': 0.5546218487394958, 'f1': 0.5569620253164557, 'number': 119} | {'precision': 0.8864059590316573, 'recall': 0.8839368616527391, 'f1': 0.8851696885169689, 'number': 1077} | 0.8468 | 0.8788 | 0.8625 | 0.7977 |
64
- | 0.0011 | 28.07 | 1600 | 0.5118 | {'precision': 0.838074398249453, 'recall': 0.9375764993880049, 'f1': 0.8850375505488157, 'number': 817} | {'precision': 0.5862068965517241, 'recall': 0.5714285714285714, 'f1': 0.5787234042553192, 'number': 119} | {'precision': 0.885972850678733, 'recall': 0.9090064995357474, 'f1': 0.8973418881759853, 'number': 1077} | 0.8492 | 0.9006 | 0.8742 | 0.7970 |
65
- | 0.0006 | 31.58 | 1800 | 0.4786 | {'precision': 0.8383500557413601, 'recall': 0.9204406364749081, 'f1': 0.8774795799299884, 'number': 817} | {'precision': 0.6, 'recall': 0.5546218487394958, 'f1': 0.5764192139737991, 'number': 119} | {'precision': 0.8851412944393802, 'recall': 0.9015784586815228, 'f1': 0.8932842686292549, 'number': 1077} | 0.8503 | 0.8887 | 0.8691 | 0.7942 |
66
- | 0.0004 | 35.09 | 2000 | 0.4959 | {'precision': 0.8338945005611672, 'recall': 0.9094247246022031, 'f1': 0.870023419203747, 'number': 817} | {'precision': 0.5172413793103449, 'recall': 0.6302521008403361, 'f1': 0.5681818181818182, 'number': 119} | {'precision': 0.8833333333333333, 'recall': 0.8857938718662952, 'f1': 0.8845618915159944, 'number': 1077} | 0.8374 | 0.8803 | 0.8583 | 0.7919 |
67
- | 0.0003 | 38.6 | 2200 | 0.5023 | {'precision': 0.8292682926829268, 'recall': 0.9155446756425949, 'f1': 0.8702734147760327, 'number': 817} | {'precision': 0.5470085470085471, 'recall': 0.5378151260504201, 'f1': 0.5423728813559322, 'number': 119} | {'precision': 0.8771610555050046, 'recall': 0.8950789229340761, 'f1': 0.8860294117647057, 'number': 1077} | 0.8385 | 0.8823 | 0.8598 | 0.7948 |
68
- | 0.0002 | 42.11 | 2400 | 0.5095 | {'precision': 0.8368479467258602, 'recall': 0.9228886168910648, 'f1': 0.8777648428405123, 'number': 817} | {'precision': 0.5333333333333333, 'recall': 0.5378151260504201, 'f1': 0.5355648535564853, 'number': 119} | {'precision': 0.8907407407407407, 'recall': 0.89322191272052, 'f1': 0.8919796012980993, 'number': 1077} | 0.8472 | 0.8843 | 0.8653 | 0.7922 |
69
 
70
 
71
  ### Framework versions
 
2
  license: mit
3
  tags:
4
  - generated_from_trainer
 
 
5
  model-index:
6
  - name: new_model
7
  results: []
 
12
 
13
  # new_model
14
 
15
+ This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.0292
18
+ - Answer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10}
19
+ - Header: {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17}
20
+ - Question: {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17}
21
+ - Overall Precision: 0.0556
22
+ - Overall Recall: 0.0455
23
+ - Overall F1: 0.0500
24
+ - Overall Accuracy: 0.6578
25
 
26
  ## Model description
27
 
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | 0.1533 | 3.92 | 200 | 0.0173 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0 | 0.0 | 0.0 | 0.5989 |
56
+ | 0.0443 | 7.84 | 400 | 0.0137 | {'precision': 0.09090909090909091, 'recall': 0.1, 'f1': 0.09523809523809525, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0164 | 0.0227 | 0.0190 | 0.6203 |
57
+ | 0.0194 | 11.76 | 600 | 0.0162 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.2222222222222222, 'recall': 0.11764705882352941, 'f1': 0.15384615384615383, 'number': 17} | {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} | 0.1154 | 0.0682 | 0.0857 | 0.6417 |
58
+ | 0.0089 | 15.69 | 800 | 0.0186 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.06666666666666667, 'recall': 0.058823529411764705, 'f1': 0.0625, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0278 | 0.0227 | 0.0250 | 0.6684 |
59
+ | 0.0036 | 19.61 | 1000 | 0.0264 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17} | {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17} | 0.0556 | 0.0455 | 0.0500 | 0.6578 |
60
+ | 0.0031 | 23.53 | 1200 | 0.0200 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.1111111111111111, 'recall': 0.11764705882352941, 'f1': 0.11428571428571428, 'number': 17} | {'precision': 0.05263157894736842, 'recall': 0.058823529411764705, 'f1': 0.05555555555555555, 'number': 17} | 0.0732 | 0.0682 | 0.0706 | 0.6791 |
61
+ | 0.0015 | 27.45 | 1400 | 0.0222 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.05, 'recall': 0.058823529411764705, 'f1': 0.05405405405405405, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0196 | 0.0227 | 0.0211 | 0.6631 |
62
+ | 0.0011 | 31.37 | 1600 | 0.0249 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | {'precision': 0.045454545454545456, 'recall': 0.058823529411764705, 'f1': 0.05128205128205128, 'number': 17} | 0.0408 | 0.0455 | 0.0430 | 0.6845 |
63
+ | 0.0006 | 35.29 | 1800 | 0.0243 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | 0.0213 | 0.0227 | 0.0220 | 0.6952 |
64
+ | 0.0004 | 39.22 | 2000 | 0.0290 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | 0.0488 | 0.0455 | 0.0471 | 0.6578 |
65
+ | 0.0002 | 43.14 | 2200 | 0.0288 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07142857142857142, 'recall': 0.058823529411764705, 'f1': 0.06451612903225808, 'number': 17} | {'precision': 0.05555555555555555, 'recall': 0.058823529411764705, 'f1': 0.05714285714285714, 'number': 17} | 0.0488 | 0.0455 | 0.0471 | 0.6578 |
66
+ | 0.0002 | 47.06 | 2400 | 0.0292 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.07692307692307693, 'recall': 0.058823529411764705, 'f1': 0.06666666666666667, 'number': 17} | {'precision': 0.0625, 'recall': 0.058823529411764705, 'f1': 0.06060606060606061, 'number': 17} | 0.0556 | 0.0455 | 0.0500 | 0.6578 |
67
 
68
 
69
  ### Framework versions
logs/events.out.tfevents.1695379633.Benjamins-MacBook-Pro.local.86295.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b015d5b2e4a18bae901886c9aba5a0876eb1f6a925435fed879bdb25be12dd8f
3
- size 12302
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90a72f2cd0f8ae6d2228feb65e92b15ef080e380a5942f61a449979608b26edd
3
+ size 12656
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71d8037af7ceaddcba8ef222f98c6692dc9b94240b6c179ef37da09cb068f3e0
3
  size 520816014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:123abf32bf6639215964c60e28b3734657e1ba6f191fede587b082600a0735d7
3
  size 520816014
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 1,
16
- "pad_type_id": 0,
17
- "pad_token": "<pad>"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,