|
|
|
--- |
|
tags: |
|
- image-classification |
|
- ecology |
|
- fungi |
|
- FGVC |
|
library_name: DanishFungi |
|
license: cc-by-nc-4.0 |
|
--- |
|
# Model card for BVRA/inception_v4.ft_in1k_df20m_299 |
|
|
|
## Model Details |
|
- **Model Type:** inception_v4.ft_in1k_df20m_299 |
|
- **Model Stats:** |
|
- Params (M): ?? |
|
- Image size: 299 x 299 |
|
- **Papers:** |
|
- **Original:** ?? |
|
- **Train Dataset:** DF20M --> https://sites.google.com/view/danish-fungi-dataset |
|
|
|
## Model Usage |
|
### Image Embeddings |
|
```python |
|
import timm |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from urllib.request import urlopen |
|
model = timm.create_model("hf-hub:BVRA/inception_v4.ft_in1k_df20m_299", pretrained=True) |
|
model = model.eval() |
|
train_transforms = T.Compose([T.Resize(299), |
|
T.ToTensor(), |
|
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) |
|
img = Image.open(PATH_TO_YOUR_IMAGE) |
|
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
https://openaccess.thecvf.com/content/WACV2022/papers/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.pdf |
|
|