--- tags: - image-classification - ecology - fungi - FGVC library_name: DanishFungi license: cc-by-nc-4.0 --- # Model card for BVRA/inception_v4.ft_in1k_df20m_299 ## Model Details - **Model Type:** inception_v4.ft_in1k_df20m_299 - **Model Stats:** - Params (M): ?? - Image size: 299 x 299 - **Papers:** - **Original:** ?? - **Train Dataset:** DF20M --> https://sites.google.com/view/danish-fungi-dataset ## Model Usage ### Image Embeddings ```python import timm import torch import torchvision.transforms as T from PIL import Image from urllib.request import urlopen model = timm.create_model("hf-hub:BVRA/inception_v4.ft_in1k_df20m_299", pretrained=True) model = model.eval() train_transforms = T.Compose([T.Resize(299), T.ToTensor(), T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) img = Image.open(PATH_TO_YOUR_IMAGE) output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # output is a (1, num_features) shaped tensor ``` ## Citation https://openaccess.thecvf.com/content/WACV2022/papers/Picek_Danish_Fungi_2020_-_Not_Just_Another_Image_Recognition_Dataset_WACV_2022_paper.pdf