|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: SWv2-DMAE-H-5-p-clean-fix-U-40-Cross-3
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: train
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8390804597701149
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# SWv2-DMAE-H-5-p-clean-fix-U-40-Cross-3
|
|
|
|
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.4952
|
|
- Accuracy: 0.8391
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 4e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 64
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 40
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| 1.609 | 0.96 | 13 | 1.6081 | 0.1954 |
|
|
| 1.6048 | 2.0 | 27 | 1.5943 | 0.1954 |
|
|
| 1.5299 | 2.96 | 40 | 1.5695 | 0.1954 |
|
|
| 1.4527 | 4.0 | 54 | 1.4408 | 0.2184 |
|
|
| 1.3442 | 4.96 | 67 | 1.1869 | 0.5632 |
|
|
| 1.114 | 6.0 | 81 | 0.9027 | 0.6897 |
|
|
| 0.9651 | 6.96 | 94 | 0.7102 | 0.7586 |
|
|
| 0.8893 | 8.0 | 108 | 0.8029 | 0.6322 |
|
|
| 0.7704 | 8.96 | 121 | 0.5880 | 0.7816 |
|
|
| 0.6737 | 10.0 | 135 | 0.5514 | 0.8161 |
|
|
| 0.6713 | 10.96 | 148 | 0.4952 | 0.8391 |
|
|
| 0.6927 | 12.0 | 162 | 0.5375 | 0.8046 |
|
|
| 0.6031 | 12.96 | 175 | 0.5099 | 0.7931 |
|
|
| 0.542 | 14.0 | 189 | 0.5453 | 0.8046 |
|
|
| 0.511 | 14.96 | 202 | 0.5673 | 0.7701 |
|
|
| 0.4901 | 16.0 | 216 | 0.6610 | 0.7931 |
|
|
| 0.4824 | 16.96 | 229 | 0.5610 | 0.8046 |
|
|
| 0.4685 | 18.0 | 243 | 0.5992 | 0.7931 |
|
|
| 0.4442 | 18.96 | 256 | 0.5958 | 0.8161 |
|
|
| 0.4676 | 20.0 | 270 | 0.5621 | 0.8391 |
|
|
| 0.4231 | 20.96 | 283 | 0.5877 | 0.8161 |
|
|
| 0.3795 | 22.0 | 297 | 0.6075 | 0.8046 |
|
|
| 0.3645 | 22.96 | 310 | 0.6449 | 0.8046 |
|
|
| 0.366 | 24.0 | 324 | 0.6480 | 0.8161 |
|
|
| 0.344 | 24.96 | 337 | 0.6409 | 0.8276 |
|
|
| 0.2833 | 26.0 | 351 | 0.6246 | 0.8161 |
|
|
| 0.326 | 26.96 | 364 | 0.6491 | 0.8276 |
|
|
| 0.3416 | 28.0 | 378 | 0.6778 | 0.8161 |
|
|
| 0.2942 | 28.96 | 391 | 0.6374 | 0.8276 |
|
|
| 0.2767 | 30.0 | 405 | 0.6426 | 0.8276 |
|
|
| 0.2569 | 30.96 | 418 | 0.6631 | 0.8276 |
|
|
| 0.2889 | 32.0 | 432 | 0.6818 | 0.8161 |
|
|
| 0.2701 | 32.96 | 445 | 0.6889 | 0.8046 |
|
|
| 0.2553 | 34.0 | 459 | 0.6986 | 0.8161 |
|
|
| 0.2401 | 34.96 | 472 | 0.6985 | 0.8046 |
|
|
| 0.2536 | 36.0 | 486 | 0.7015 | 0.8046 |
|
|
| 0.2738 | 36.96 | 499 | 0.6940 | 0.8046 |
|
|
| 0.2304 | 38.0 | 513 | 0.6951 | 0.8046 |
|
|
| 0.3081 | 38.52 | 520 | 0.6951 | 0.8046 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.36.2
|
|
- Pytorch 2.1.2+cu118
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.0
|
|
|