Augusto777's picture
End of training
fbb3ae5 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: SWv2-DMAE-H-5-p-clean-fix-U-40-Cross-3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8390804597701149

SWv2-DMAE-H-5-p-clean-fix-U-40-Cross-3

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4952
  • Accuracy: 0.8391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.609 0.96 13 1.6081 0.1954
1.6048 2.0 27 1.5943 0.1954
1.5299 2.96 40 1.5695 0.1954
1.4527 4.0 54 1.4408 0.2184
1.3442 4.96 67 1.1869 0.5632
1.114 6.0 81 0.9027 0.6897
0.9651 6.96 94 0.7102 0.7586
0.8893 8.0 108 0.8029 0.6322
0.7704 8.96 121 0.5880 0.7816
0.6737 10.0 135 0.5514 0.8161
0.6713 10.96 148 0.4952 0.8391
0.6927 12.0 162 0.5375 0.8046
0.6031 12.96 175 0.5099 0.7931
0.542 14.0 189 0.5453 0.8046
0.511 14.96 202 0.5673 0.7701
0.4901 16.0 216 0.6610 0.7931
0.4824 16.96 229 0.5610 0.8046
0.4685 18.0 243 0.5992 0.7931
0.4442 18.96 256 0.5958 0.8161
0.4676 20.0 270 0.5621 0.8391
0.4231 20.96 283 0.5877 0.8161
0.3795 22.0 297 0.6075 0.8046
0.3645 22.96 310 0.6449 0.8046
0.366 24.0 324 0.6480 0.8161
0.344 24.96 337 0.6409 0.8276
0.2833 26.0 351 0.6246 0.8161
0.326 26.96 364 0.6491 0.8276
0.3416 28.0 378 0.6778 0.8161
0.2942 28.96 391 0.6374 0.8276
0.2767 30.0 405 0.6426 0.8276
0.2569 30.96 418 0.6631 0.8276
0.2889 32.0 432 0.6818 0.8161
0.2701 32.96 445 0.6889 0.8046
0.2553 34.0 459 0.6986 0.8161
0.2401 34.96 472 0.6985 0.8046
0.2536 36.0 486 0.7015 0.8046
0.2738 36.96 499 0.6940 0.8046
0.2304 38.0 513 0.6951 0.8046
0.3081 38.52 520 0.6951 0.8046

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0