Augusto777's picture
End of training
0d21130 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: SWv2-DMAE-H-4-rp-clean-fix-U-40-Cross-5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8690476190476191

SWv2-DMAE-H-4-rp-clean-fix-U-40-Cross-5

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4646
  • Accuracy: 0.8690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6088 0.98 12 1.6063 0.2024
1.6024 1.96 24 1.5854 0.2024
1.568 2.94 36 1.5534 0.2024
1.5001 4.0 49 1.4693 0.2024
1.3811 4.98 61 1.3256 0.3690
1.27 5.96 73 1.0978 0.5476
1.0887 6.94 85 0.8237 0.7381
0.937 8.0 98 0.7746 0.7143
0.811 8.98 110 0.5772 0.7976
0.7574 9.96 122 0.6164 0.7857
0.7118 10.94 134 0.6410 0.7976
0.6374 12.0 147 0.5243 0.8095
0.5958 12.98 159 0.4589 0.8095
0.5446 13.96 171 0.5288 0.7738
0.5348 14.94 183 0.4989 0.7619
0.464 16.0 196 0.5408 0.7857
0.4641 16.98 208 0.4609 0.7738
0.4471 17.96 220 0.4229 0.8333
0.4301 18.94 232 0.3962 0.8452
0.3862 20.0 245 0.4005 0.8452
0.3659 20.98 257 0.3873 0.8452
0.3488 21.96 269 0.4196 0.8333
0.3683 22.94 281 0.4299 0.8095
0.3477 24.0 294 0.4470 0.8214
0.3426 24.98 306 0.4478 0.8333
0.3 25.96 318 0.4604 0.8452
0.3138 26.94 330 0.4114 0.8571
0.2569 28.0 343 0.4640 0.8452
0.2894 28.98 355 0.5187 0.7976
0.2996 29.96 367 0.4617 0.8452
0.3046 30.94 379 0.4646 0.8690
0.2896 32.0 392 0.4492 0.8571
0.2548 32.98 404 0.4523 0.8571
0.2137 33.96 416 0.4764 0.8333
0.2246 34.94 428 0.4474 0.8571
0.2684 36.0 441 0.4495 0.8452
0.2413 36.98 453 0.4634 0.8452
0.2633 37.96 465 0.4558 0.8452
0.2518 38.94 477 0.4523 0.8452
0.2428 39.18 480 0.4523 0.8452

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0