File size: 4,413 Bytes
254580c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d21130
254580c
 
 
 
 
 
 
 
 
0d21130
 
254580c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d21130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254580c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---

license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: SWv2-DMAE-H-4-rp-clean-fix-U-40-Cross-5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8690476190476191
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SWv2-DMAE-H-4-rp-clean-fix-U-40-Cross-5

This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4646
- Accuracy: 0.8690

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1

- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6088        | 0.98  | 12   | 1.6063          | 0.2024   |
| 1.6024        | 1.96  | 24   | 1.5854          | 0.2024   |
| 1.568         | 2.94  | 36   | 1.5534          | 0.2024   |
| 1.5001        | 4.0   | 49   | 1.4693          | 0.2024   |
| 1.3811        | 4.98  | 61   | 1.3256          | 0.3690   |
| 1.27          | 5.96  | 73   | 1.0978          | 0.5476   |
| 1.0887        | 6.94  | 85   | 0.8237          | 0.7381   |
| 0.937         | 8.0   | 98   | 0.7746          | 0.7143   |
| 0.811         | 8.98  | 110  | 0.5772          | 0.7976   |
| 0.7574        | 9.96  | 122  | 0.6164          | 0.7857   |
| 0.7118        | 10.94 | 134  | 0.6410          | 0.7976   |
| 0.6374        | 12.0  | 147  | 0.5243          | 0.8095   |
| 0.5958        | 12.98 | 159  | 0.4589          | 0.8095   |
| 0.5446        | 13.96 | 171  | 0.5288          | 0.7738   |
| 0.5348        | 14.94 | 183  | 0.4989          | 0.7619   |
| 0.464         | 16.0  | 196  | 0.5408          | 0.7857   |
| 0.4641        | 16.98 | 208  | 0.4609          | 0.7738   |
| 0.4471        | 17.96 | 220  | 0.4229          | 0.8333   |
| 0.4301        | 18.94 | 232  | 0.3962          | 0.8452   |
| 0.3862        | 20.0  | 245  | 0.4005          | 0.8452   |
| 0.3659        | 20.98 | 257  | 0.3873          | 0.8452   |
| 0.3488        | 21.96 | 269  | 0.4196          | 0.8333   |
| 0.3683        | 22.94 | 281  | 0.4299          | 0.8095   |
| 0.3477        | 24.0  | 294  | 0.4470          | 0.8214   |
| 0.3426        | 24.98 | 306  | 0.4478          | 0.8333   |
| 0.3           | 25.96 | 318  | 0.4604          | 0.8452   |
| 0.3138        | 26.94 | 330  | 0.4114          | 0.8571   |
| 0.2569        | 28.0  | 343  | 0.4640          | 0.8452   |
| 0.2894        | 28.98 | 355  | 0.5187          | 0.7976   |
| 0.2996        | 29.96 | 367  | 0.4617          | 0.8452   |
| 0.3046        | 30.94 | 379  | 0.4646          | 0.8690   |
| 0.2896        | 32.0  | 392  | 0.4492          | 0.8571   |
| 0.2548        | 32.98 | 404  | 0.4523          | 0.8571   |
| 0.2137        | 33.96 | 416  | 0.4764          | 0.8333   |
| 0.2246        | 34.94 | 428  | 0.4474          | 0.8571   |
| 0.2684        | 36.0  | 441  | 0.4495          | 0.8452   |
| 0.2413        | 36.98 | 453  | 0.4634          | 0.8452   |
| 0.2633        | 37.96 | 465  | 0.4558          | 0.8452   |
| 0.2518        | 38.94 | 477  | 0.4523          | 0.8452   |
| 0.2428        | 39.18 | 480  | 0.4523          | 0.8452   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0