ArtiSikhwal's picture
End of training
8781393 verified
metadata
library_name: transformers
license: apache-2.0
base_model: ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: headlight_12_12_2024_google_vit-base-patch16-224-in21k
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9014772078868953

headlight_12_12_2024_google_vit-base-patch16-224-in21k

This model is a fine-tuned version of ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2587
  • Accuracy: 0.9015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9995 492 0.2682 0.8973
0.1998 1.9990 984 0.2701 0.8982
0.1988 2.9985 1476 0.2708 0.8974
0.1976 4.0 1969 0.2609 0.9013
0.2131 4.9995 2461 0.2584 0.9011
0.2169 5.9970 2952 0.2587 0.9015

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3