--- library_name: transformers license: apache-2.0 base_model: ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: headlight_12_12_2024_google_vit-base-patch16-224-in21k results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9014772078868953 --- # headlight_12_12_2024_google_vit-base-patch16-224-in21k This model is a fine-tuned version of [ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k](https://huggingface.co/ArtiSikhwal/headlight_11_12_2024_google_vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2587 - Accuracy: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9995 | 492 | 0.2682 | 0.8973 | | 0.1998 | 1.9990 | 984 | 0.2701 | 0.8982 | | 0.1988 | 2.9985 | 1476 | 0.2708 | 0.8974 | | 0.1976 | 4.0 | 1969 | 0.2609 | 0.9013 | | 0.2131 | 4.9995 | 2461 | 0.2584 | 0.9011 | | 0.2169 | 5.9970 | 2952 | 0.2587 | 0.9015 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3