w2v-bert-Odia-large / README.md
Anujgr8's picture
Update README.md
6cdf951 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v-bert-Marathi-large
    results: []

w2v-bert-Marathi-large

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.190338
  • Wer: 0.108757
  • Cer: 0.024650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.8076 0.5882 300 0.5988 0.5285 0.1285
0.4551 1.1765 600 0.4358 0.3706 0.0871
0.3345 1.7647 900 0.3568 0.3610 0.0779
0.2521 2.3529 1200 0.3093 0.2636 0.0581
0.1886 2.9412 1500 0.2731 0.2421 0.0541
0.1352 3.5294 1800 0.2458 0.1907 0.0419
0.0951 4.1176 2100 0.2165 0.1712 0.0363
0.0608 4.7059 2400 0.2203 0.1356 0.0303
0.0348 5.2941 2700 0.2000 0.1169 0.0260
0.0166 5.8824 3000 0.1903 0.1088 0.0247

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1