--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-Marathi-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v-bert-Marathi-large This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.190338 - Wer: 0.108757 - Cer: 0.024650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 2.8076 | 0.5882 | 300 | 0.5988 | 0.5285 | 0.1285 | | 0.4551 | 1.1765 | 600 | 0.4358 | 0.3706 | 0.0871 | | 0.3345 | 1.7647 | 900 | 0.3568 | 0.3610 | 0.0779 | | 0.2521 | 2.3529 | 1200 | 0.3093 | 0.2636 | 0.0581 | | 0.1886 | 2.9412 | 1500 | 0.2731 | 0.2421 | 0.0541 | | 0.1352 | 3.5294 | 1800 | 0.2458 | 0.1907 | 0.0419 | | 0.0951 | 4.1176 | 2100 | 0.2165 | 0.1712 | 0.0363 | | 0.0608 | 4.7059 | 2400 | 0.2203 | 0.1356 | 0.0303 | | 0.0348 | 5.2941 | 2700 | 0.2000 | 0.1169 | 0.0260 | | 0.0166 | 5.8824 | 3000 | 0.1903 | 0.1088 | 0.0247 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1