Amadkour's picture
Upload tokenizer
72e7450 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: Amadkour/wav2vec2-large-xls-r-300m-tr-softkour
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-tr-softkour
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - type: wer
            value: 0.44904159531569354
            name: Wer

wav2vec2-large-xls-r-300m-tr-softkour

This model is a fine-tuned version of Amadkour/wav2vec2-large-xls-r-300m-tr-softkour on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4793
  • Wer: 0.4490

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Wer
0.4662 0.33 400 0.7627 0.6241
0.3927 0.67 800 0.7286 0.6213
0.4613 1.0 1200 0.5779 0.5185
0.4552 1.33 1600 0.5412 0.4945
0.4145 1.66 2000 0.4922 0.4652
0.3713 2.0 2400 0.4793 0.4490

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cpu
  • Datasets 2.18.0
  • Tokenizers 0.15.2