File size: 2,276 Bytes
cb4918b 72e7450 cb4918b 83c5a5d cb4918b 83c5a5d 72e7450 83c5a5d 72e7450 83c5a5d 72e7450 cb4918b fdf85b4 83c5a5d cb4918b 83c5a5d cb4918b 83c5a5d cb4918b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: Amadkour/wav2vec2-large-xls-r-300m-tr-softkour
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-tr-softkour
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: ar
split: test
args: ar
metrics:
- type: wer
value: 0.44904159531569354
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-tr-softkour
This model is a fine-tuned version of [Amadkour/wav2vec2-large-xls-r-300m-tr-softkour](https://huggingface.co/Amadkour/wav2vec2-large-xls-r-300m-tr-softkour) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4793
- Wer: 0.4490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4662 | 0.33 | 400 | 0.7627 | 0.6241 |
| 0.3927 | 0.67 | 800 | 0.7286 | 0.6213 |
| 0.4613 | 1.0 | 1200 | 0.5779 | 0.5185 |
| 0.4552 | 1.33 | 1600 | 0.5412 | 0.4945 |
| 0.4145 | 1.66 | 2000 | 0.4922 | 0.4652 |
| 0.3713 | 2.0 | 2400 | 0.4793 | 0.4490 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cpu
- Datasets 2.18.0
- Tokenizers 0.15.2
|