metadata
tags:
- generated_from_trainer
datasets:
- id_liputan6
model-index:
- name: bert2bert-model99-last
results: []
bert2bert-model99-last
This model is a fine-tuned version of on the id_liputan6 dataset. It achieves the following results on the evaluation set:
- Loss: 2.8701
- R1 Precision: 0.3001
- R1 Recall: 0.34
- R1 Fmeasure: 0.3156
- R2 Precision: 0.121
- R2 Recall: 0.1366
- R2 Fmeasure: 0.1269
- Rl Precision: 0.239
- Rl Recall: 0.2707
- Rl Fmeasure: 0.2513
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 18
- eval_batch_size: 18
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.3429 | 1.0 | 10772 | 2.7616 | 0.29 | 0.3334 | 0.3069 | 0.1175 | 0.1351 | 0.1243 | 0.2329 | 0.2678 | 0.2464 |
1.5227 | 2.0 | 21544 | 2.6637 | 0.287 | 0.3356 | 0.3062 | 0.1148 | 0.1338 | 0.1222 | 0.2304 | 0.2693 | 0.2457 |
1.3203 | 3.0 | 32316 | 2.6384 | 0.2934 | 0.3387 | 0.3111 | 0.1195 | 0.1377 | 0.1265 | 0.2355 | 0.272 | 0.2498 |
1.169 | 4.0 | 43088 | 2.6579 | 0.3004 | 0.3403 | 0.3158 | 0.1228 | 0.139 | 0.129 | 0.2407 | 0.2726 | 0.253 |
1.0416 | 5.0 | 53860 | 2.6894 | 0.2963 | 0.3367 | 0.3121 | 0.1202 | 0.1362 | 0.1264 | 0.2367 | 0.2691 | 0.2494 |
0.9303 | 6.0 | 64632 | 2.7418 | 0.2986 | 0.3417 | 0.3155 | 0.1213 | 0.1384 | 0.1279 | 0.2385 | 0.2727 | 0.2519 |
0.8375 | 7.0 | 75404 | 2.8060 | 0.3009 | 0.3417 | 0.3168 | 0.1223 | 0.1384 | 0.1285 | 0.2402 | 0.2727 | 0.2528 |
0.7675 | 8.0 | 86176 | 2.8701 | 0.3001 | 0.34 | 0.3156 | 0.121 | 0.1366 | 0.1269 | 0.239 | 0.2707 | 0.2513 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1
- Datasets 2.19.0
- Tokenizers 0.19.1