train 8 epochs with 18 batch size
Browse files- README.md +74 -0
- generation_config.json +13 -0
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- id_liputan6
|
6 |
+
model-index:
|
7 |
+
- name: bert2bert-model99-last
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# bert2bert-model99-last
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the id_liputan6 dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.8701
|
19 |
+
- R1 Precision: 0.3001
|
20 |
+
- R1 Recall: 0.34
|
21 |
+
- R1 Fmeasure: 0.3156
|
22 |
+
- R2 Precision: 0.121
|
23 |
+
- R2 Recall: 0.1366
|
24 |
+
- R2 Fmeasure: 0.1269
|
25 |
+
- Rl Precision: 0.239
|
26 |
+
- Rl Recall: 0.2707
|
27 |
+
- Rl Fmeasure: 0.2513
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 18
|
48 |
+
- eval_batch_size: 18
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 8
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|
|
59 |
+
| 2.3429 | 1.0 | 10772 | 2.7616 | 0.29 | 0.3334 | 0.3069 | 0.1175 | 0.1351 | 0.1243 | 0.2329 | 0.2678 | 0.2464 |
|
60 |
+
| 1.5227 | 2.0 | 21544 | 2.6637 | 0.287 | 0.3356 | 0.3062 | 0.1148 | 0.1338 | 0.1222 | 0.2304 | 0.2693 | 0.2457 |
|
61 |
+
| 1.3203 | 3.0 | 32316 | 2.6384 | 0.2934 | 0.3387 | 0.3111 | 0.1195 | 0.1377 | 0.1265 | 0.2355 | 0.272 | 0.2498 |
|
62 |
+
| 1.169 | 4.0 | 43088 | 2.6579 | 0.3004 | 0.3403 | 0.3158 | 0.1228 | 0.139 | 0.129 | 0.2407 | 0.2726 | 0.253 |
|
63 |
+
| 1.0416 | 5.0 | 53860 | 2.6894 | 0.2963 | 0.3367 | 0.3121 | 0.1202 | 0.1362 | 0.1264 | 0.2367 | 0.2691 | 0.2494 |
|
64 |
+
| 0.9303 | 6.0 | 64632 | 2.7418 | 0.2986 | 0.3417 | 0.3155 | 0.1213 | 0.1384 | 0.1279 | 0.2385 | 0.2727 | 0.2519 |
|
65 |
+
| 0.8375 | 7.0 | 75404 | 2.8060 | 0.3009 | 0.3417 | 0.3168 | 0.1223 | 0.1384 | 0.1285 | 0.2402 | 0.2727 | 0.2528 |
|
66 |
+
| 0.7675 | 8.0 | 86176 | 2.8701 | 0.3001 | 0.34 | 0.3156 | 0.121 | 0.1366 | 0.1269 | 0.239 | 0.2707 | 0.2513 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.40.0
|
72 |
+
- Pytorch 2.2.1
|
73 |
+
- Datasets 2.19.0
|
74 |
+
- Tokenizers 0.19.1
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"decoder_start_token_id": 3,
|
4 |
+
"early_stopping": true,
|
5 |
+
"eos_token_id": 4,
|
6 |
+
"length_penalty": 2.0,
|
7 |
+
"max_length": 80,
|
8 |
+
"min_length": 10,
|
9 |
+
"no_repeat_ngram_size": 3,
|
10 |
+
"num_beams": 10,
|
11 |
+
"pad_token_id": 0,
|
12 |
+
"transformers_version": "4.40.0"
|
13 |
+
}
|