wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3943
  • Wer: 0.3340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.23 100 3.6296 1.0
No log 0.46 200 3.1588 0.9999
No log 0.69 300 2.3111 1.0083
No log 0.92 400 0.9852 0.7981
3.6643 1.15 500 0.7056 0.7363
3.6643 1.38 600 0.6146 0.6287
3.6643 1.61 700 0.5583 0.6195
3.6643 1.84 800 0.5529 0.5678
3.6643 2.07 900 0.5280 0.5373
0.5896 2.3 1000 0.5253 0.5349
0.5896 2.53 1100 0.4803 0.5057
0.5896 2.76 1200 0.4562 0.5132
0.5896 2.99 1300 0.4252 0.4873
0.5896 3.22 1400 0.4428 0.4831
0.368 3.45 1500 0.4510 0.4779
0.368 3.68 1600 0.4404 0.4946
0.368 3.91 1700 0.4330 0.4785
0.368 4.14 1800 0.4358 0.4558
0.368 4.37 1900 0.4126 0.4643
0.2629 4.6 2000 0.4197 0.4529
0.2629 4.83 2100 0.4064 0.4409
0.2629 5.06 2200 0.4285 0.4514
0.2629 5.29 2300 0.4193 0.4204
0.2629 5.52 2400 0.4301 0.4219
0.2072 5.75 2500 0.4222 0.4335
0.2072 5.98 2600 0.4077 0.4231
0.2072 6.21 2700 0.4132 0.4121
0.2072 6.44 2800 0.4113 0.4220
0.2072 6.67 2900 0.4101 0.4175
0.1731 6.9 3000 0.4240 0.4122
0.1731 7.13 3100 0.4309 0.4023
0.1731 7.36 3200 0.4275 0.3987
0.1731 7.59 3300 0.4289 0.4063
0.1731 7.82 3400 0.4181 0.4025
0.1397 8.05 3500 0.4490 0.3885
0.1397 8.28 3600 0.4198 0.3872
0.1397 8.51 3700 0.3980 0.3842
0.1397 8.74 3800 0.4051 0.3876
0.1397 8.97 3900 0.4080 0.3912
0.1224 9.2 4000 0.4180 0.3774
0.1224 9.43 4100 0.4102 0.3820
0.1224 9.66 4200 0.3978 0.3880
0.1224 9.89 4300 0.4157 0.3731
0.1224 10.11 4400 0.4175 0.3741
0.1012 10.34 4500 0.3887 0.3705
0.1012 10.57 4600 0.4064 0.3774
0.1012 10.8 4700 0.3961 0.3622
0.1012 11.03 4800 0.3912 0.3574
0.1012 11.26 4900 0.4020 0.3638
0.088 11.49 5000 0.4117 0.3560
0.088 11.72 5100 0.3916 0.3524
0.088 11.95 5200 0.4012 0.3533
0.088 12.18 5300 0.4085 0.3584
0.088 12.41 5400 0.4000 0.3547
0.0775 12.64 5500 0.4137 0.3525
0.0775 12.87 5600 0.4005 0.3466
0.0775 13.1 5700 0.3986 0.3479
0.0775 13.33 5800 0.3983 0.3470
0.0775 13.56 5900 0.3940 0.3429
0.0716 13.79 6000 0.3872 0.3383
0.0716 14.02 6100 0.4005 0.3384
0.0716 14.25 6200 0.4005 0.3363
0.0716 14.48 6300 0.3973 0.3357
0.0716 14.71 6400 0.3957 0.3347
0.0639 14.94 6500 0.3942 0.3340

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.11.0
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train AlbertoFor/wav2vec2-common_voice-tr-demo

Evaluation results