AlbertoFor's picture
update model card README.md
3e7c008
metadata
language:
  - tr
license: apache-2.0
tags:
  - automatic-speech-recognition
  - common_voice
  - generated_from_trainer
datasets:
  - common_voice
metrics:
  - wer
model-index:
  - name: wav2vec2-common_voice-tr-demo
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: COMMON_VOICE - TR
          type: common_voice
          config: tr
          split: test
          args: 'Config: tr, Training split: train+validation, Eval split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.33398018588499645

wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3943
  • Wer: 0.3340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.23 100 3.6296 1.0
No log 0.46 200 3.1588 0.9999
No log 0.69 300 2.3111 1.0083
No log 0.92 400 0.9852 0.7981
3.6643 1.15 500 0.7056 0.7363
3.6643 1.38 600 0.6146 0.6287
3.6643 1.61 700 0.5583 0.6195
3.6643 1.84 800 0.5529 0.5678
3.6643 2.07 900 0.5280 0.5373
0.5896 2.3 1000 0.5253 0.5349
0.5896 2.53 1100 0.4803 0.5057
0.5896 2.76 1200 0.4562 0.5132
0.5896 2.99 1300 0.4252 0.4873
0.5896 3.22 1400 0.4428 0.4831
0.368 3.45 1500 0.4510 0.4779
0.368 3.68 1600 0.4404 0.4946
0.368 3.91 1700 0.4330 0.4785
0.368 4.14 1800 0.4358 0.4558
0.368 4.37 1900 0.4126 0.4643
0.2629 4.6 2000 0.4197 0.4529
0.2629 4.83 2100 0.4064 0.4409
0.2629 5.06 2200 0.4285 0.4514
0.2629 5.29 2300 0.4193 0.4204
0.2629 5.52 2400 0.4301 0.4219
0.2072 5.75 2500 0.4222 0.4335
0.2072 5.98 2600 0.4077 0.4231
0.2072 6.21 2700 0.4132 0.4121
0.2072 6.44 2800 0.4113 0.4220
0.2072 6.67 2900 0.4101 0.4175
0.1731 6.9 3000 0.4240 0.4122
0.1731 7.13 3100 0.4309 0.4023
0.1731 7.36 3200 0.4275 0.3987
0.1731 7.59 3300 0.4289 0.4063
0.1731 7.82 3400 0.4181 0.4025
0.1397 8.05 3500 0.4490 0.3885
0.1397 8.28 3600 0.4198 0.3872
0.1397 8.51 3700 0.3980 0.3842
0.1397 8.74 3800 0.4051 0.3876
0.1397 8.97 3900 0.4080 0.3912
0.1224 9.2 4000 0.4180 0.3774
0.1224 9.43 4100 0.4102 0.3820
0.1224 9.66 4200 0.3978 0.3880
0.1224 9.89 4300 0.4157 0.3731
0.1224 10.11 4400 0.4175 0.3741
0.1012 10.34 4500 0.3887 0.3705
0.1012 10.57 4600 0.4064 0.3774
0.1012 10.8 4700 0.3961 0.3622
0.1012 11.03 4800 0.3912 0.3574
0.1012 11.26 4900 0.4020 0.3638
0.088 11.49 5000 0.4117 0.3560
0.088 11.72 5100 0.3916 0.3524
0.088 11.95 5200 0.4012 0.3533
0.088 12.18 5300 0.4085 0.3584
0.088 12.41 5400 0.4000 0.3547
0.0775 12.64 5500 0.4137 0.3525
0.0775 12.87 5600 0.4005 0.3466
0.0775 13.1 5700 0.3986 0.3479
0.0775 13.33 5800 0.3983 0.3470
0.0775 13.56 5900 0.3940 0.3429
0.0716 13.79 6000 0.3872 0.3383
0.0716 14.02 6100 0.4005 0.3384
0.0716 14.25 6200 0.4005 0.3363
0.0716 14.48 6300 0.3973 0.3357
0.0716 14.71 6400 0.3957 0.3347
0.0639 14.94 6500 0.3942 0.3340

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.11.0