lilt-en-funsd / README.md
AHMED36's picture
End of training
f1fa33a
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9565
  • Answer: {'precision': 0.8948004836759371, 'recall': 0.9057527539779682, 'f1': 0.9002433090024331, 'number': 817}
  • Header: {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119}
  • Question: {'precision': 0.8923212709620476, 'recall': 0.9387186629526463, 'f1': 0.9149321266968325, 'number': 1077}
  • Overall Precision: 0.8834
  • Overall Recall: 0.9036
  • Overall F1: 0.8934
  • Overall Accuracy: 0.8096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.409 10.53 200 0.8991 {'precision': 0.8176855895196506, 'recall': 0.9167686658506732, 'f1': 0.8643969994229659, 'number': 817} {'precision': 0.5094339622641509, 'recall': 0.453781512605042, 'f1': 0.48, 'number': 119} {'precision': 0.891465677179963, 'recall': 0.8922934076137419, 'f1': 0.8918793503480278, 'number': 1077} 0.84 0.8763 0.8578 0.7897
0.0485 21.05 400 1.1875 {'precision': 0.8504566210045662, 'recall': 0.9118727050183598, 'f1': 0.8800945067926758, 'number': 817} {'precision': 0.5691056910569106, 'recall': 0.5882352941176471, 'f1': 0.578512396694215, 'number': 119} {'precision': 0.8970315398886828, 'recall': 0.8978644382544104, 'f1': 0.897447795823666, 'number': 1077} 0.8580 0.8852 0.8714 0.7935
0.0139 31.58 600 1.5032 {'precision': 0.8455377574370709, 'recall': 0.9045287637698899, 'f1': 0.8740390301596689, 'number': 817} {'precision': 0.6206896551724138, 'recall': 0.6050420168067226, 'f1': 0.6127659574468085, 'number': 119} {'precision': 0.9057142857142857, 'recall': 0.883008356545961, 'f1': 0.8942172073342736, 'number': 1077} 0.8637 0.8753 0.8695 0.7913
0.0083 42.11 800 1.4968 {'precision': 0.8316939890710382, 'recall': 0.9314565483476133, 'f1': 0.8787528868360277, 'number': 817} {'precision': 0.6363636363636364, 'recall': 0.47058823529411764, 'f1': 0.5410628019323671, 'number': 119} {'precision': 0.8928909952606635, 'recall': 0.8746518105849582, 'f1': 0.8836772983114447, 'number': 1077} 0.8547 0.8738 0.8642 0.8017
0.0058 52.63 1000 1.7837 {'precision': 0.8385300668151447, 'recall': 0.9216646266829865, 'f1': 0.8781341107871721, 'number': 817} {'precision': 0.6138613861386139, 'recall': 0.5210084033613446, 'f1': 0.5636363636363637, 'number': 119} {'precision': 0.8972667295004713, 'recall': 0.8839368616527391, 'f1': 0.8905519176800748, 'number': 1077} 0.8578 0.8778 0.8677 0.7914
0.008 63.16 1200 1.8600 {'precision': 0.8239130434782609, 'recall': 0.9277845777233782, 'f1': 0.8727691421991941, 'number': 817} {'precision': 0.5865384615384616, 'recall': 0.5126050420168067, 'f1': 0.5470852017937219, 'number': 119} {'precision': 0.9037735849056604, 'recall': 0.8895078922934077, 'f1': 0.8965839962564343, 'number': 1077} 0.8527 0.8828 0.8675 0.8009
0.0037 73.68 1400 2.8372 {'precision': 0.8821428571428571, 'recall': 0.9069767441860465, 'f1': 0.8943874471937237, 'number': 817} {'precision': 0.5966386554621849, 'recall': 0.5966386554621849, 'f1': 0.5966386554621849, 'number': 119} {'precision': 0.8961748633879781, 'recall': 0.9136490250696379, 'f1': 0.9048275862068965, 'number': 1077} 0.8731 0.8922 0.8826 0.7928
0.004 84.21 1600 2.8378 {'precision': 0.881578947368421, 'recall': 0.9020807833537332, 'f1': 0.8917120387174834, 'number': 817} {'precision': 0.631578947368421, 'recall': 0.6050420168067226, 'f1': 0.6180257510729613, 'number': 119} {'precision': 0.891989198919892, 'recall': 0.9201485608170845, 'f1': 0.9058500914076782, 'number': 1077} 0.8734 0.8942 0.8837 0.8079
0.0018 94.74 1800 3.0272 {'precision': 0.8742655699177438, 'recall': 0.9106487148102815, 'f1': 0.8920863309352519, 'number': 817} {'precision': 0.6759259259259259, 'recall': 0.6134453781512605, 'f1': 0.6431718061674008, 'number': 119} {'precision': 0.89937106918239, 'recall': 0.9294336118848654, 'f1': 0.9141552511415526, 'number': 1077} 0.8774 0.9031 0.8901 0.7992
0.0008 105.26 2000 2.9565 {'precision': 0.8948004836759371, 'recall': 0.9057527539779682, 'f1': 0.9002433090024331, 'number': 817} {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119} {'precision': 0.8923212709620476, 'recall': 0.9387186629526463, 'f1': 0.9149321266968325, 'number': 1077} 0.8834 0.9036 0.8934 0.8096
0.0008 115.79 2200 3.1429 {'precision': 0.8411111111111111, 'recall': 0.9265605875152999, 'f1': 0.881770529994176, 'number': 817} {'precision': 0.6666666666666666, 'recall': 0.5546218487394958, 'f1': 0.6055045871559633, 'number': 119} {'precision': 0.9147141518275539, 'recall': 0.9062209842154132, 'f1': 0.9104477611940299, 'number': 1077} 0.8708 0.8937 0.8821 0.7970
0.0005 126.32 2400 3.0269 {'precision': 0.8617511520737328, 'recall': 0.9155446756425949, 'f1': 0.8878338278931751, 'number': 817} {'precision': 0.6952380952380952, 'recall': 0.6134453781512605, 'f1': 0.6517857142857143, 'number': 119} {'precision': 0.906871609403255, 'recall': 0.9312906220984215, 'f1': 0.9189189189189189, 'number': 1077} 0.8773 0.9061 0.8915 0.7994

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3