Edit model card

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9565
  • Answer: {'precision': 0.8948004836759371, 'recall': 0.9057527539779682, 'f1': 0.9002433090024331, 'number': 817}
  • Header: {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119}
  • Question: {'precision': 0.8923212709620476, 'recall': 0.9387186629526463, 'f1': 0.9149321266968325, 'number': 1077}
  • Overall Precision: 0.8834
  • Overall Recall: 0.9036
  • Overall F1: 0.8934
  • Overall Accuracy: 0.8096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.409 10.53 200 0.8991 {'precision': 0.8176855895196506, 'recall': 0.9167686658506732, 'f1': 0.8643969994229659, 'number': 817} {'precision': 0.5094339622641509, 'recall': 0.453781512605042, 'f1': 0.48, 'number': 119} {'precision': 0.891465677179963, 'recall': 0.8922934076137419, 'f1': 0.8918793503480278, 'number': 1077} 0.84 0.8763 0.8578 0.7897
0.0485 21.05 400 1.1875 {'precision': 0.8504566210045662, 'recall': 0.9118727050183598, 'f1': 0.8800945067926758, 'number': 817} {'precision': 0.5691056910569106, 'recall': 0.5882352941176471, 'f1': 0.578512396694215, 'number': 119} {'precision': 0.8970315398886828, 'recall': 0.8978644382544104, 'f1': 0.897447795823666, 'number': 1077} 0.8580 0.8852 0.8714 0.7935
0.0139 31.58 600 1.5032 {'precision': 0.8455377574370709, 'recall': 0.9045287637698899, 'f1': 0.8740390301596689, 'number': 817} {'precision': 0.6206896551724138, 'recall': 0.6050420168067226, 'f1': 0.6127659574468085, 'number': 119} {'precision': 0.9057142857142857, 'recall': 0.883008356545961, 'f1': 0.8942172073342736, 'number': 1077} 0.8637 0.8753 0.8695 0.7913
0.0083 42.11 800 1.4968 {'precision': 0.8316939890710382, 'recall': 0.9314565483476133, 'f1': 0.8787528868360277, 'number': 817} {'precision': 0.6363636363636364, 'recall': 0.47058823529411764, 'f1': 0.5410628019323671, 'number': 119} {'precision': 0.8928909952606635, 'recall': 0.8746518105849582, 'f1': 0.8836772983114447, 'number': 1077} 0.8547 0.8738 0.8642 0.8017
0.0058 52.63 1000 1.7837 {'precision': 0.8385300668151447, 'recall': 0.9216646266829865, 'f1': 0.8781341107871721, 'number': 817} {'precision': 0.6138613861386139, 'recall': 0.5210084033613446, 'f1': 0.5636363636363637, 'number': 119} {'precision': 0.8972667295004713, 'recall': 0.8839368616527391, 'f1': 0.8905519176800748, 'number': 1077} 0.8578 0.8778 0.8677 0.7914
0.008 63.16 1200 1.8600 {'precision': 0.8239130434782609, 'recall': 0.9277845777233782, 'f1': 0.8727691421991941, 'number': 817} {'precision': 0.5865384615384616, 'recall': 0.5126050420168067, 'f1': 0.5470852017937219, 'number': 119} {'precision': 0.9037735849056604, 'recall': 0.8895078922934077, 'f1': 0.8965839962564343, 'number': 1077} 0.8527 0.8828 0.8675 0.8009
0.0037 73.68 1400 2.8372 {'precision': 0.8821428571428571, 'recall': 0.9069767441860465, 'f1': 0.8943874471937237, 'number': 817} {'precision': 0.5966386554621849, 'recall': 0.5966386554621849, 'f1': 0.5966386554621849, 'number': 119} {'precision': 0.8961748633879781, 'recall': 0.9136490250696379, 'f1': 0.9048275862068965, 'number': 1077} 0.8731 0.8922 0.8826 0.7928
0.004 84.21 1600 2.8378 {'precision': 0.881578947368421, 'recall': 0.9020807833537332, 'f1': 0.8917120387174834, 'number': 817} {'precision': 0.631578947368421, 'recall': 0.6050420168067226, 'f1': 0.6180257510729613, 'number': 119} {'precision': 0.891989198919892, 'recall': 0.9201485608170845, 'f1': 0.9058500914076782, 'number': 1077} 0.8734 0.8942 0.8837 0.8079
0.0018 94.74 1800 3.0272 {'precision': 0.8742655699177438, 'recall': 0.9106487148102815, 'f1': 0.8920863309352519, 'number': 817} {'precision': 0.6759259259259259, 'recall': 0.6134453781512605, 'f1': 0.6431718061674008, 'number': 119} {'precision': 0.89937106918239, 'recall': 0.9294336118848654, 'f1': 0.9141552511415526, 'number': 1077} 0.8774 0.9031 0.8901 0.7992
0.0008 105.26 2000 2.9565 {'precision': 0.8948004836759371, 'recall': 0.9057527539779682, 'f1': 0.9002433090024331, 'number': 817} {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119} {'precision': 0.8923212709620476, 'recall': 0.9387186629526463, 'f1': 0.9149321266968325, 'number': 1077} 0.8834 0.9036 0.8934 0.8096
0.0008 115.79 2200 3.1429 {'precision': 0.8411111111111111, 'recall': 0.9265605875152999, 'f1': 0.881770529994176, 'number': 817} {'precision': 0.6666666666666666, 'recall': 0.5546218487394958, 'f1': 0.6055045871559633, 'number': 119} {'precision': 0.9147141518275539, 'recall': 0.9062209842154132, 'f1': 0.9104477611940299, 'number': 1077} 0.8708 0.8937 0.8821 0.7970
0.0005 126.32 2400 3.0269 {'precision': 0.8617511520737328, 'recall': 0.9155446756425949, 'f1': 0.8878338278931751, 'number': 817} {'precision': 0.6952380952380952, 'recall': 0.6134453781512605, 'f1': 0.6517857142857143, 'number': 119} {'precision': 0.906871609403255, 'recall': 0.9312906220984215, 'f1': 0.9189189189189189, 'number': 1077} 0.8773 0.9061 0.8915 0.7994

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AHMED36/lilt-en-funsd

Finetuned
(43)
this model