|
--- |
|
license: gemma |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
base_model: google/gemma-2-27b-it |
|
tags: |
|
- alignment-handbook |
|
- generated_from_trainer |
|
--- |
|
|
|
# gemma-2-27b-it-simpo-beta10-gamma5-lr8e-7 |
|
|
|
## Implementation Details |
|
We first followed the [SimPO](https://github.com/princeton-nlp/SimPO) framework to apply [On-Policy Preference Data Generation](https://github.com/princeton-nlp/SimPO/tree/main/on_policy_data_gen) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset using the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) model. We then selected prompts where the chosen reward was at least 0.01 higher than the rejected reward, resulting in 37,040 training data points. |
|
|
|
Model training was conducted using 8x80G A800 GPUs, leveraging the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library. We used `deepspeed_zero_stage3` with optimizer offloading to the CPU. The `SimPOTrainer` arguments were as follows: |
|
|
|
```bash |
|
# SimPOTrainer arguments |
|
bf16: true |
|
beta: 10 |
|
gamma_beta_ratio: 0.5 |
|
gradient_accumulation_steps: 8 |
|
gradient_checkpointing: true |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: true |
|
hub_model_id: simpo-exps |
|
learning_rate: 8.0e-7 |
|
log_level: info |
|
logging_steps: 1 |
|
lr_scheduler_type: cosine |
|
max_length: 2048 |
|
max_prompt_length: 1800 |
|
num_train_epochs: 1 |
|
optim: adamw_torch |
|
output_dir: outputs/gemma-2-27b-it-SimPO |
|
run_name: gemma-2-27b-it-SimPO |
|
per_device_train_batch_size: 2 |
|
push_to_hub: false |
|
save_strategy: "steps" |
|
save_steps: 100 |
|
save_total_limit: 20 |
|
seed: 42 |
|
warmup_ratio: 0.1 |
|
save_only_model: true |
|
``` |
|
|
|
## Citation |
|
|
|
gemma model: |
|
``` |
|
@article{gemma_2024, |
|
title={Gemma}, |
|
url={https://www.kaggle.com/m/3301}, |
|
DOI={10.34740/KAGGLE/M/3301}, |
|
publisher={Kaggle}, |
|
author={Gemma Team}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
SimPO paper: |
|
``` |
|
@article{meng2024simpo, |
|
title={{SimPO}: Simple preference optimization with a reference-free reward}, |
|
author={Meng, Yu and Xia, Mengzhou and Chen, Danqi}, |
|
journal={arXiv preprint arXiv:2405.14734}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
UltraFeedback paper: |
|
``` |
|
@article{cui2023ultrafeedback, |
|
title={{UltraFeedback}: Boosting language models with high-quality feedback}, |
|
author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong}, |
|
journal={arXiv preprint arXiv:2310.01377}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
ArmoRM paper: |
|
``` |
|
@article{wang2024interpretable, |
|
title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts}, |
|
author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong}, |
|
journal={arXiv preprint arXiv:2406.12845}, |
|
year={2024} |
|
} |
|
``` |