Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
base_model: google/gemma-2-27b-it
|
6 |
+
tags:
|
7 |
+
- alignment-handbook
|
8 |
+
- generated_from_trainer
|
9 |
+
---
|
10 |
+
|
11 |
+
# gemma-2-27b-it-simpo-beta10-gamma5-lr8e-7
|
12 |
+
|
13 |
+
## Implementation Details
|
14 |
+
We first followed the [SimPO](https://github.com/princeton-nlp/SimPO) framework to apply [On-Policy Preference Data Generation](https://github.com/princeton-nlp/SimPO/tree/main/on_policy_data_gen) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset using the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) model. We then selected prompts where the chosen reward was at least 0.01 higher than the rejected reward, resulting in 37,040 training data points.
|
15 |
+
|
16 |
+
Model training was conducted using 8x80G A800 GPUs, leveraging the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library. We used `deepspeed_zero_stage3` with optimizer offloading to the CPU. The `SimPOTrainer` arguments were as follows:
|
17 |
+
|
18 |
+
```bash
|
19 |
+
# SimPOTrainer arguments
|
20 |
+
bf16: true
|
21 |
+
beta: 10
|
22 |
+
gamma_beta_ratio: 0.5
|
23 |
+
gradient_accumulation_steps: 8
|
24 |
+
gradient_checkpointing: true
|
25 |
+
gradient_checkpointing_kwargs:
|
26 |
+
use_reentrant: true
|
27 |
+
hub_model_id: simpo-exps
|
28 |
+
learning_rate: 8.0e-7
|
29 |
+
log_level: info
|
30 |
+
logging_steps: 1
|
31 |
+
lr_scheduler_type: cosine
|
32 |
+
max_length: 2048
|
33 |
+
max_prompt_length: 1800
|
34 |
+
num_train_epochs: 1
|
35 |
+
optim: adamw_torch
|
36 |
+
output_dir: outputs/gemma-2-27b-it-SimPO
|
37 |
+
run_name: gemma-2-27b-it-SimPO
|
38 |
+
per_device_train_batch_size: 2
|
39 |
+
push_to_hub: false
|
40 |
+
save_strategy: "steps"
|
41 |
+
save_steps: 100
|
42 |
+
save_total_limit: 20
|
43 |
+
seed: 42
|
44 |
+
warmup_ratio: 0.1
|
45 |
+
save_only_model: true
|
46 |
+
```
|
47 |
+
|
48 |
+
## Citation
|
49 |
+
|
50 |
+
gemma model:
|
51 |
+
```
|
52 |
+
@article{gemma_2024,
|
53 |
+
title={Gemma},
|
54 |
+
url={https://www.kaggle.com/m/3301},
|
55 |
+
DOI={10.34740/KAGGLE/M/3301},
|
56 |
+
publisher={Kaggle},
|
57 |
+
author={Gemma Team},
|
58 |
+
year={2024}
|
59 |
+
}
|
60 |
+
```
|
61 |
+
|
62 |
+
SimPO paper:
|
63 |
+
```
|
64 |
+
@article{meng2024simpo,
|
65 |
+
title={{SimPO}: Simple preference optimization with a reference-free reward},
|
66 |
+
author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
|
67 |
+
journal={arXiv preprint arXiv:2405.14734},
|
68 |
+
year={2024}
|
69 |
+
}
|
70 |
+
```
|
71 |
+
|
72 |
+
UltraFeedback paper:
|
73 |
+
```
|
74 |
+
@article{cui2023ultrafeedback,
|
75 |
+
title={{UltraFeedback}: Boosting language models with high-quality feedback},
|
76 |
+
author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
|
77 |
+
journal={arXiv preprint arXiv:2310.01377},
|
78 |
+
year={2023}
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
ArmoRM paper:
|
83 |
+
```
|
84 |
+
@article{wang2024interpretable,
|
85 |
+
title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
|
86 |
+
author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
|
87 |
+
journal={arXiv preprint arXiv:2406.12845},
|
88 |
+
year={2024}
|
89 |
+
}
|
90 |
+
```
|