File size: 15,985 Bytes
b67f297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a10a7fc
b67f297
 
a10a7fc
 
 
 
 
 
 
b67f297
 
 
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
 
 
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
b67f297
a10a7fc
 
 
 
b67f297
 
a10a7fc
b67f297
 
 
 
 
 
 
 
 
 
 
a10a7fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d908fd7
a10a7fc
 
 
 
 
 
 
 
d908fd7
a10a7fc
 
 
 
 
 
 
 
 
b67f297
d908fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b67f297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Exploring Code for Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "metadata = pd.read_csv(\"../data/focus/metadata.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Unnamed: 0</th>\n",
       "      <th>image_path</th>\n",
       "      <th>original_filename</th>\n",
       "      <th>study_id</th>\n",
       "      <th>scan_uuid</th>\n",
       "      <th>focus_value</th>\n",
       "      <th>stack_id</th>\n",
       "      <th>obj_name</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631...</td>\n",
       "      <td>I01631_X013_Y012_Z5107.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
       "      <td>-2.82953</td>\n",
       "      <td>1658220</td>\n",
       "      <td>133</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01632...</td>\n",
       "      <td>I01632_X013_Y012_Z5175.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
       "      <td>-2.70408</td>\n",
       "      <td>1658220</td>\n",
       "      <td>133</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01633...</td>\n",
       "      <td>I01633_X013_Y012_Z5722.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
       "      <td>-2.69918</td>\n",
       "      <td>1658220</td>\n",
       "      <td>133</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01634...</td>\n",
       "      <td>I01634_X013_Y012_Z5244.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
       "      <td>-2.50266</td>\n",
       "      <td>1658220</td>\n",
       "      <td>133</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01635...</td>\n",
       "      <td>I01635_X013_Y012_Z5654.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
       "      <td>-2.36450</td>\n",
       "      <td>1658220</td>\n",
       "      <td>133</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>565</th>\n",
       "      <td>565</td>\n",
       "      <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01406...</td>\n",
       "      <td>I01406_X016_Y009_Z5361.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
       "      <td>-3.41147</td>\n",
       "      <td>1674918</td>\n",
       "      <td>217</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>566</th>\n",
       "      <td>566</td>\n",
       "      <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01407...</td>\n",
       "      <td>I01407_X016_Y009_Z5087.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
       "      <td>-3.05424</td>\n",
       "      <td>1674918</td>\n",
       "      <td>217</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>567</th>\n",
       "      <td>567</td>\n",
       "      <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01408...</td>\n",
       "      <td>I01408_X016_Y009_Z5292.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
       "      <td>-1.48608</td>\n",
       "      <td>1674918</td>\n",
       "      <td>217</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>568</th>\n",
       "      <td>568</td>\n",
       "      <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01409...</td>\n",
       "      <td>I01409_X016_Y009_Z5156.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
       "      <td>-0.52804</td>\n",
       "      <td>1674918</td>\n",
       "      <td>217</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>569</th>\n",
       "      <td>569</td>\n",
       "      <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01410...</td>\n",
       "      <td>I01410_X016_Y009_Z5224.jpg</td>\n",
       "      <td>31</td>\n",
       "      <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
       "      <td>0.00000</td>\n",
       "      <td>1674918</td>\n",
       "      <td>217</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>570 rows × 8 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     Unnamed: 0                                         image_path  \\\n",
       "0             0  31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631...   \n",
       "1             1  31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01632...   \n",
       "2             2  31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01633...   \n",
       "3             3  31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01634...   \n",
       "4             4  31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01635...   \n",
       "..          ...                                                ...   \n",
       "565         565  31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01406...   \n",
       "566         566  31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01407...   \n",
       "567         567  31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01408...   \n",
       "568         568  31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01409...   \n",
       "569         569  31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01410...   \n",
       "\n",
       "              original_filename  study_id  \\\n",
       "0    I01631_X013_Y012_Z5107.jpg        31   \n",
       "1    I01632_X013_Y012_Z5175.jpg        31   \n",
       "2    I01633_X013_Y012_Z5722.jpg        31   \n",
       "3    I01634_X013_Y012_Z5244.jpg        31   \n",
       "4    I01635_X013_Y012_Z5654.jpg        31   \n",
       "..                          ...       ...   \n",
       "565  I01406_X016_Y009_Z5361.jpg        31   \n",
       "566  I01407_X016_Y009_Z5087.jpg        31   \n",
       "567  I01408_X016_Y009_Z5292.jpg        31   \n",
       "568  I01409_X016_Y009_Z5156.jpg        31   \n",
       "569  I01410_X016_Y009_Z5224.jpg        31   \n",
       "\n",
       "                                scan_uuid  focus_value  stack_id  obj_name  \n",
       "0    fba56d57-656e-4b6f-ba63-e4ba3ad083f5     -2.82953   1658220       133  \n",
       "1    fba56d57-656e-4b6f-ba63-e4ba3ad083f5     -2.70408   1658220       133  \n",
       "2    fba56d57-656e-4b6f-ba63-e4ba3ad083f5     -2.69918   1658220       133  \n",
       "3    fba56d57-656e-4b6f-ba63-e4ba3ad083f5     -2.50266   1658220       133  \n",
       "4    fba56d57-656e-4b6f-ba63-e4ba3ad083f5     -2.36450   1658220       133  \n",
       "..                                    ...          ...       ...       ...  \n",
       "565  4c7e9e66-61a1-47ca-aa4e-340b0eef8db1     -3.41147   1674918       217  \n",
       "566  4c7e9e66-61a1-47ca-aa4e-340b0eef8db1     -3.05424   1674918       217  \n",
       "567  4c7e9e66-61a1-47ca-aa4e-340b0eef8db1     -1.48608   1674918       217  \n",
       "568  4c7e9e66-61a1-47ca-aa4e-340b0eef8db1     -0.52804   1674918       217  \n",
       "569  4c7e9e66-61a1-47ca-aa4e-340b0eef8db1      0.00000   1674918       217  \n",
       "\n",
       "[570 rows x 8 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631_X013_Y012_Z5107_600_375.jpg'"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "idx = 0\n",
    "# File Path\n",
    "metadata.iloc[idx, 1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-2.82953"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Focus Value\n",
    "metadata.iloc[idx, 5]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Testing FocusDataSet"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "570\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'image': array([[[172, 173, 159],\n",
       "         [166, 167, 153],\n",
       "         [171, 173, 160],\n",
       "         ...,\n",
       "         [199, 202, 173],\n",
       "         [199, 202, 173],\n",
       "         [200, 201, 170]],\n",
       " \n",
       "        [[167, 169, 155],\n",
       "         [164, 166, 152],\n",
       "         [171, 175, 160],\n",
       "         ...,\n",
       "         [194, 197, 168],\n",
       "         [195, 198, 169],\n",
       "         [199, 200, 169]],\n",
       " \n",
       "        [[146, 153, 135],\n",
       "         [149, 156, 138],\n",
       "         [163, 172, 153],\n",
       "         ...,\n",
       "         [189, 192, 163],\n",
       "         [191, 194, 165],\n",
       "         [197, 198, 167]],\n",
       " \n",
       "        ...,\n",
       " \n",
       "        [[ 57,  62,  68],\n",
       "         [ 41,  46,  52],\n",
       "         [ 24,  31,  39],\n",
       "         ...,\n",
       "         [198, 189, 180],\n",
       "         [188, 179, 170],\n",
       "         [180, 171, 164]],\n",
       " \n",
       "        [[ 46,  51,  57],\n",
       "         [ 34,  39,  45],\n",
       "         [ 21,  28,  36],\n",
       "         ...,\n",
       "         [208, 200, 189],\n",
       "         [197, 190, 180],\n",
       "         [188, 181, 173]],\n",
       " \n",
       "        [[ 31,  39,  42],\n",
       "         [ 23,  31,  34],\n",
       "         [ 18,  25,  31],\n",
       "         ...,\n",
       "         [215, 209, 197],\n",
       "         [205, 199, 187],\n",
       "         [197, 190, 180]]], dtype=uint8),\n",
       " 'focus_value': 0.0}"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from importlib.machinery import SourceFileLoader\n",
    "\n",
    "focus_datamodule = SourceFileLoader(\"focus_datamodule\", \"../src/datamodules/focus_datamodule.py\").load_module()\n",
    "from focus_datamodule import FocusDataSet\n",
    "\n",
    "ds = FocusDataSet(\"../data/focus/metadata.csv\", \"../data/focus/\")\n",
    "\n",
    "counter = 0\n",
    "for d in ds:\n",
    "    counter += 1\n",
    "\n",
    "print(counter)\n",
    "\n",
    "d"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from focus_datamodule import FocusDataModule\n",
    "\n",
    "datamodule = FocusDataModule(data_dir=\"../data/focus\", csv_file=\"../data/focus/metadata.csv\")\n",
    "datamodule.setup()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "64"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "for data in datamodule.test_dataloader():\n",
    "    break\n",
    "\n",
    "len(data[\"focus_value\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/hku/.local/lib/python3.8/site-packages/torch/nn/modules/loss.py:96: UserWarning: Using a target size (torch.Size([64])) that is different to the input size (torch.Size([64, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.\n",
      "  return F.l1_loss(input, target, reduction=self.reduction)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(tensor(2.5787, grad_fn=<L1LossBackward0>),\n",
       " tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
       " tensor([-1.2805, -0.0943, -2.3645,  0.8542, -0.8047, -6.0020,  0.0000, -4.3352,\n",
       "         -1.8066, -2.7189, -6.4697, -3.2557, -4.2778, -5.0264, -3.4891,  0.0000,\n",
       "         -1.7181, -2.7314,  0.3324, -0.0943, -0.8991,  0.0000, -4.4178,  1.9723,\n",
       "         -3.0026, -5.5685,  3.8374,  3.8625, -0.4125, -4.1936, -1.5781, -1.6393,\n",
       "         -2.9583, -5.4933, -1.7807, -3.3135, -5.3423, -0.7978, -5.3971, -4.9412,\n",
       "          0.0000, -4.4128, -5.7744, -5.2755, -1.0996, -5.7482,  0.0000, -0.1737,\n",
       "         -3.5851, -6.1429, -6.3642, -3.9653, -0.2081, -0.9539, -0.4159, -0.5388,\n",
       "         -1.3643, -4.4441, -1.5161,  0.6395, -5.4710, -2.6482,  0.0000, -2.6257],\n",
       "        dtype=torch.float64))"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import types\n",
    "import importlib.machinery\n",
    "focus_module = SourceFileLoader('focus_module', '../src/models/focus_module.py').load_module()\n",
    "from focus_module import FocusLitModule\n",
    "\n",
    "model = FocusLitModule()\n",
    "\n",
    "model.step(data)"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "f9f85f796d01129d0dd105a088854619f454435301f6ffec2fea96ecbd9be4ac"
  },
  "kernelspec": {
   "display_name": "Python 3.9.7 64-bit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}