Hannes Kuchelmeister
commited on
Commit
·
b67f297
1
Parent(s):
93d387e
Add dataset in preparation for the data module
Browse files
models/notebooks/1.0-hfk-datamodules-exploration.ipynb
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Exploring Code for Data"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import pandas as pd"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 2,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"metadata = pd.read_csv(\"../data/focus/metadata.csv\")"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 3,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"data": {
|
35 |
+
"text/html": [
|
36 |
+
"<div>\n",
|
37 |
+
"<style scoped>\n",
|
38 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
39 |
+
" vertical-align: middle;\n",
|
40 |
+
" }\n",
|
41 |
+
"\n",
|
42 |
+
" .dataframe tbody tr th {\n",
|
43 |
+
" vertical-align: top;\n",
|
44 |
+
" }\n",
|
45 |
+
"\n",
|
46 |
+
" .dataframe thead th {\n",
|
47 |
+
" text-align: right;\n",
|
48 |
+
" }\n",
|
49 |
+
"</style>\n",
|
50 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
51 |
+
" <thead>\n",
|
52 |
+
" <tr style=\"text-align: right;\">\n",
|
53 |
+
" <th></th>\n",
|
54 |
+
" <th>Unnamed: 0</th>\n",
|
55 |
+
" <th>image_path</th>\n",
|
56 |
+
" <th>original_filename</th>\n",
|
57 |
+
" <th>study_id</th>\n",
|
58 |
+
" <th>scan_uuid</th>\n",
|
59 |
+
" <th>focus_value</th>\n",
|
60 |
+
" <th>stack_id</th>\n",
|
61 |
+
" <th>obj_name</th>\n",
|
62 |
+
" </tr>\n",
|
63 |
+
" </thead>\n",
|
64 |
+
" <tbody>\n",
|
65 |
+
" <tr>\n",
|
66 |
+
" <th>0</th>\n",
|
67 |
+
" <td>0</td>\n",
|
68 |
+
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631...</td>\n",
|
69 |
+
" <td>I01631_X013_Y012_Z5107.jpg</td>\n",
|
70 |
+
" <td>31</td>\n",
|
71 |
+
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
72 |
+
" <td>-2.82953</td>\n",
|
73 |
+
" <td>1658220</td>\n",
|
74 |
+
" <td>133</td>\n",
|
75 |
+
" </tr>\n",
|
76 |
+
" <tr>\n",
|
77 |
+
" <th>1</th>\n",
|
78 |
+
" <td>1</td>\n",
|
79 |
+
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01632...</td>\n",
|
80 |
+
" <td>I01632_X013_Y012_Z5175.jpg</td>\n",
|
81 |
+
" <td>31</td>\n",
|
82 |
+
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
83 |
+
" <td>-2.70408</td>\n",
|
84 |
+
" <td>1658220</td>\n",
|
85 |
+
" <td>133</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>2</th>\n",
|
89 |
+
" <td>2</td>\n",
|
90 |
+
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01633...</td>\n",
|
91 |
+
" <td>I01633_X013_Y012_Z5722.jpg</td>\n",
|
92 |
+
" <td>31</td>\n",
|
93 |
+
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
94 |
+
" <td>-2.69918</td>\n",
|
95 |
+
" <td>1658220</td>\n",
|
96 |
+
" <td>133</td>\n",
|
97 |
+
" </tr>\n",
|
98 |
+
" <tr>\n",
|
99 |
+
" <th>3</th>\n",
|
100 |
+
" <td>3</td>\n",
|
101 |
+
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01634...</td>\n",
|
102 |
+
" <td>I01634_X013_Y012_Z5244.jpg</td>\n",
|
103 |
+
" <td>31</td>\n",
|
104 |
+
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
105 |
+
" <td>-2.50266</td>\n",
|
106 |
+
" <td>1658220</td>\n",
|
107 |
+
" <td>133</td>\n",
|
108 |
+
" </tr>\n",
|
109 |
+
" <tr>\n",
|
110 |
+
" <th>4</th>\n",
|
111 |
+
" <td>4</td>\n",
|
112 |
+
" <td>31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01635...</td>\n",
|
113 |
+
" <td>I01635_X013_Y012_Z5654.jpg</td>\n",
|
114 |
+
" <td>31</td>\n",
|
115 |
+
" <td>fba56d57-656e-4b6f-ba63-e4ba3ad083f5</td>\n",
|
116 |
+
" <td>-2.36450</td>\n",
|
117 |
+
" <td>1658220</td>\n",
|
118 |
+
" <td>133</td>\n",
|
119 |
+
" </tr>\n",
|
120 |
+
" <tr>\n",
|
121 |
+
" <th>...</th>\n",
|
122 |
+
" <td>...</td>\n",
|
123 |
+
" <td>...</td>\n",
|
124 |
+
" <td>...</td>\n",
|
125 |
+
" <td>...</td>\n",
|
126 |
+
" <td>...</td>\n",
|
127 |
+
" <td>...</td>\n",
|
128 |
+
" <td>...</td>\n",
|
129 |
+
" <td>...</td>\n",
|
130 |
+
" </tr>\n",
|
131 |
+
" <tr>\n",
|
132 |
+
" <th>565</th>\n",
|
133 |
+
" <td>565</td>\n",
|
134 |
+
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01406...</td>\n",
|
135 |
+
" <td>I01406_X016_Y009_Z5361.jpg</td>\n",
|
136 |
+
" <td>31</td>\n",
|
137 |
+
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
138 |
+
" <td>-3.41147</td>\n",
|
139 |
+
" <td>1674918</td>\n",
|
140 |
+
" <td>217</td>\n",
|
141 |
+
" </tr>\n",
|
142 |
+
" <tr>\n",
|
143 |
+
" <th>566</th>\n",
|
144 |
+
" <td>566</td>\n",
|
145 |
+
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01407...</td>\n",
|
146 |
+
" <td>I01407_X016_Y009_Z5087.jpg</td>\n",
|
147 |
+
" <td>31</td>\n",
|
148 |
+
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
149 |
+
" <td>-3.05424</td>\n",
|
150 |
+
" <td>1674918</td>\n",
|
151 |
+
" <td>217</td>\n",
|
152 |
+
" </tr>\n",
|
153 |
+
" <tr>\n",
|
154 |
+
" <th>567</th>\n",
|
155 |
+
" <td>567</td>\n",
|
156 |
+
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01408...</td>\n",
|
157 |
+
" <td>I01408_X016_Y009_Z5292.jpg</td>\n",
|
158 |
+
" <td>31</td>\n",
|
159 |
+
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
160 |
+
" <td>-1.48608</td>\n",
|
161 |
+
" <td>1674918</td>\n",
|
162 |
+
" <td>217</td>\n",
|
163 |
+
" </tr>\n",
|
164 |
+
" <tr>\n",
|
165 |
+
" <th>568</th>\n",
|
166 |
+
" <td>568</td>\n",
|
167 |
+
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01409...</td>\n",
|
168 |
+
" <td>I01409_X016_Y009_Z5156.jpg</td>\n",
|
169 |
+
" <td>31</td>\n",
|
170 |
+
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
171 |
+
" <td>-0.52804</td>\n",
|
172 |
+
" <td>1674918</td>\n",
|
173 |
+
" <td>217</td>\n",
|
174 |
+
" </tr>\n",
|
175 |
+
" <tr>\n",
|
176 |
+
" <th>569</th>\n",
|
177 |
+
" <td>569</td>\n",
|
178 |
+
" <td>31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01410...</td>\n",
|
179 |
+
" <td>I01410_X016_Y009_Z5224.jpg</td>\n",
|
180 |
+
" <td>31</td>\n",
|
181 |
+
" <td>4c7e9e66-61a1-47ca-aa4e-340b0eef8db1</td>\n",
|
182 |
+
" <td>0.00000</td>\n",
|
183 |
+
" <td>1674918</td>\n",
|
184 |
+
" <td>217</td>\n",
|
185 |
+
" </tr>\n",
|
186 |
+
" </tbody>\n",
|
187 |
+
"</table>\n",
|
188 |
+
"<p>570 rows × 8 columns</p>\n",
|
189 |
+
"</div>"
|
190 |
+
],
|
191 |
+
"text/plain": [
|
192 |
+
" Unnamed: 0 image_path \\\n",
|
193 |
+
"0 0 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631... \n",
|
194 |
+
"1 1 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01632... \n",
|
195 |
+
"2 2 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01633... \n",
|
196 |
+
"3 3 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01634... \n",
|
197 |
+
"4 4 31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01635... \n",
|
198 |
+
".. ... ... \n",
|
199 |
+
"565 565 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01406... \n",
|
200 |
+
"566 566 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01407... \n",
|
201 |
+
"567 567 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01408... \n",
|
202 |
+
"568 568 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01409... \n",
|
203 |
+
"569 569 31/4c7e9e66-61a1-47ca-aa4e-340b0eef8db1/I01410... \n",
|
204 |
+
"\n",
|
205 |
+
" original_filename study_id \\\n",
|
206 |
+
"0 I01631_X013_Y012_Z5107.jpg 31 \n",
|
207 |
+
"1 I01632_X013_Y012_Z5175.jpg 31 \n",
|
208 |
+
"2 I01633_X013_Y012_Z5722.jpg 31 \n",
|
209 |
+
"3 I01634_X013_Y012_Z5244.jpg 31 \n",
|
210 |
+
"4 I01635_X013_Y012_Z5654.jpg 31 \n",
|
211 |
+
".. ... ... \n",
|
212 |
+
"565 I01406_X016_Y009_Z5361.jpg 31 \n",
|
213 |
+
"566 I01407_X016_Y009_Z5087.jpg 31 \n",
|
214 |
+
"567 I01408_X016_Y009_Z5292.jpg 31 \n",
|
215 |
+
"568 I01409_X016_Y009_Z5156.jpg 31 \n",
|
216 |
+
"569 I01410_X016_Y009_Z5224.jpg 31 \n",
|
217 |
+
"\n",
|
218 |
+
" scan_uuid focus_value stack_id obj_name \n",
|
219 |
+
"0 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.82953 1658220 133 \n",
|
220 |
+
"1 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.70408 1658220 133 \n",
|
221 |
+
"2 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.69918 1658220 133 \n",
|
222 |
+
"3 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.50266 1658220 133 \n",
|
223 |
+
"4 fba56d57-656e-4b6f-ba63-e4ba3ad083f5 -2.36450 1658220 133 \n",
|
224 |
+
".. ... ... ... ... \n",
|
225 |
+
"565 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -3.41147 1674918 217 \n",
|
226 |
+
"566 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -3.05424 1674918 217 \n",
|
227 |
+
"567 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -1.48608 1674918 217 \n",
|
228 |
+
"568 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 -0.52804 1674918 217 \n",
|
229 |
+
"569 4c7e9e66-61a1-47ca-aa4e-340b0eef8db1 0.00000 1674918 217 \n",
|
230 |
+
"\n",
|
231 |
+
"[570 rows x 8 columns]"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
"execution_count": 3,
|
235 |
+
"metadata": {},
|
236 |
+
"output_type": "execute_result"
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"source": [
|
240 |
+
"metadata"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": 4,
|
246 |
+
"metadata": {},
|
247 |
+
"outputs": [
|
248 |
+
{
|
249 |
+
"data": {
|
250 |
+
"text/plain": [
|
251 |
+
"'31/fba56d57-656e-4b6f-ba63-e4ba3ad083f5/I01631_X013_Y012_Z5107_600_375.jpg'"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
"execution_count": 4,
|
255 |
+
"metadata": {},
|
256 |
+
"output_type": "execute_result"
|
257 |
+
}
|
258 |
+
],
|
259 |
+
"source": [
|
260 |
+
"idx = 0\n",
|
261 |
+
"# File Path\n",
|
262 |
+
"metadata.iloc[idx, 1]"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": 5,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [
|
270 |
+
{
|
271 |
+
"data": {
|
272 |
+
"text/plain": [
|
273 |
+
"-2.82953"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
"execution_count": 5,
|
277 |
+
"metadata": {},
|
278 |
+
"output_type": "execute_result"
|
279 |
+
}
|
280 |
+
],
|
281 |
+
"source": [
|
282 |
+
"# Focus Value\n",
|
283 |
+
"metadata.iloc[idx, 5]"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "markdown",
|
288 |
+
"metadata": {},
|
289 |
+
"source": [
|
290 |
+
"## Testing FocusDataSet"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": 7,
|
296 |
+
"metadata": {},
|
297 |
+
"outputs": [
|
298 |
+
{
|
299 |
+
"data": {
|
300 |
+
"text/plain": [
|
301 |
+
"{'image': array([[[181, 190, 171],\n",
|
302 |
+
" [180, 189, 170],\n",
|
303 |
+
" [180, 186, 172],\n",
|
304 |
+
" ...,\n",
|
305 |
+
" [172, 176, 177],\n",
|
306 |
+
" [171, 176, 179],\n",
|
307 |
+
" [170, 178, 180]],\n",
|
308 |
+
" \n",
|
309 |
+
" [[181, 190, 173],\n",
|
310 |
+
" [181, 190, 173],\n",
|
311 |
+
" [180, 188, 175],\n",
|
312 |
+
" ...,\n",
|
313 |
+
" [169, 173, 174],\n",
|
314 |
+
" [169, 175, 175],\n",
|
315 |
+
" [170, 176, 176]],\n",
|
316 |
+
" \n",
|
317 |
+
" [[179, 190, 176],\n",
|
318 |
+
" [179, 190, 176],\n",
|
319 |
+
" [179, 189, 180],\n",
|
320 |
+
" ...,\n",
|
321 |
+
" [169, 169, 167],\n",
|
322 |
+
" [169, 171, 170],\n",
|
323 |
+
" [169, 171, 170]],\n",
|
324 |
+
" \n",
|
325 |
+
" ...,\n",
|
326 |
+
" \n",
|
327 |
+
" [[195, 201, 197],\n",
|
328 |
+
" [195, 201, 197],\n",
|
329 |
+
" [195, 201, 197],\n",
|
330 |
+
" ...,\n",
|
331 |
+
" [198, 195, 188],\n",
|
332 |
+
" [199, 198, 196],\n",
|
333 |
+
" [202, 200, 205]],\n",
|
334 |
+
" \n",
|
335 |
+
" [[195, 201, 197],\n",
|
336 |
+
" [195, 201, 197],\n",
|
337 |
+
" [195, 201, 197],\n",
|
338 |
+
" ...,\n",
|
339 |
+
" [198, 195, 188],\n",
|
340 |
+
" [199, 198, 196],\n",
|
341 |
+
" [202, 200, 205]],\n",
|
342 |
+
" \n",
|
343 |
+
" [[195, 201, 197],\n",
|
344 |
+
" [195, 201, 197],\n",
|
345 |
+
" [195, 201, 197],\n",
|
346 |
+
" ...,\n",
|
347 |
+
" [198, 195, 188],\n",
|
348 |
+
" [199, 198, 196],\n",
|
349 |
+
" [202, 200, 203]]], dtype=uint8),\n",
|
350 |
+
" 'focus_value': -2.70408}"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
"execution_count": 7,
|
354 |
+
"metadata": {},
|
355 |
+
"output_type": "execute_result"
|
356 |
+
}
|
357 |
+
],
|
358 |
+
"source": [
|
359 |
+
"from importlib.machinery import SourceFileLoader\n",
|
360 |
+
"\n",
|
361 |
+
"focus_datamodule = SourceFileLoader(\"focus_datamodule\", \"../src/datamodules/focus_datamodule.py\").load_module()\n",
|
362 |
+
"from focus_datamodule import FocusDataSet\n",
|
363 |
+
"\n",
|
364 |
+
"ds = FocusDataSet(\"../data/focus/metadata.csv\", \"../data/focus/\")\n",
|
365 |
+
"ds[1]"
|
366 |
+
]
|
367 |
+
}
|
368 |
+
],
|
369 |
+
"metadata": {
|
370 |
+
"interpreter": {
|
371 |
+
"hash": "f9f85f796d01129d0dd105a088854619f454435301f6ffec2fea96ecbd9be4ac"
|
372 |
+
},
|
373 |
+
"kernelspec": {
|
374 |
+
"display_name": "Python 3.9.7 64-bit",
|
375 |
+
"language": "python",
|
376 |
+
"name": "python3"
|
377 |
+
},
|
378 |
+
"language_info": {
|
379 |
+
"codemirror_mode": {
|
380 |
+
"name": "ipython",
|
381 |
+
"version": 3
|
382 |
+
},
|
383 |
+
"file_extension": ".py",
|
384 |
+
"mimetype": "text/x-python",
|
385 |
+
"name": "python",
|
386 |
+
"nbconvert_exporter": "python",
|
387 |
+
"pygments_lexer": "ipython3",
|
388 |
+
"version": "3.8.10"
|
389 |
+
},
|
390 |
+
"orig_nbformat": 4
|
391 |
+
},
|
392 |
+
"nbformat": 4,
|
393 |
+
"nbformat_minor": 2
|
394 |
+
}
|
models/requirements.txt
CHANGED
@@ -4,6 +4,9 @@ torchvision>=0.11.0
|
|
4 |
pytorch-lightning>=1.5.10
|
5 |
torchmetrics>=0.7.0
|
6 |
|
|
|
|
|
|
|
7 |
# --------- hydra --------- #
|
8 |
hydra-core>=1.1.0
|
9 |
hydra-colorlog>=1.1.0
|
|
|
4 |
pytorch-lightning>=1.5.10
|
5 |
torchmetrics>=0.7.0
|
6 |
|
7 |
+
# --------- data and model dependencies --------- #
|
8 |
+
scikit-image
|
9 |
+
|
10 |
# --------- hydra --------- #
|
11 |
hydra-core>=1.1.0
|
12 |
hydra-colorlog>=1.1.0
|
models/src/datamodules/focus_datamodule.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Optional, Tuple, Union
|
3 |
+
from typing_extensions import Self
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from skimage import io
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from pytorch_lightning import LightningDataModule
|
10 |
+
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
|
11 |
+
from torchvision.datasets import MNIST
|
12 |
+
from torchvision.transforms import transforms
|
13 |
+
|
14 |
+
|
15 |
+
class FocusDataSet(Dataset):
|
16 |
+
"""Dataset for z-stacked images of neglected tropical diseaeses."""
|
17 |
+
|
18 |
+
def __init__(self, csv_file, root_dir, transform=None):
|
19 |
+
"""Initialize focus satck dataset.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
csv_file (string): Path to the csv file with annotations.
|
23 |
+
root_dir (string): Directory with all the images.
|
24 |
+
transform (callable, optional): Optional transform to be applied
|
25 |
+
on a sample.
|
26 |
+
"""
|
27 |
+
self.metadata = pd.read_csv(csv_file)
|
28 |
+
self.root_dir = root_dir
|
29 |
+
self.transform = transform
|
30 |
+
|
31 |
+
def __len__(self) -> int:
|
32 |
+
"""Get the length of the dataset.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
int: the length
|
36 |
+
"""
|
37 |
+
return len(self.metadata)
|
38 |
+
|
39 |
+
def __getitem__(self, idx):
|
40 |
+
"""Get one items from the dataset.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
idx (int) The index of the sample that is to be retrieved
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Item/Items which is a dictionary containing "image" and "focus_value"
|
47 |
+
"""
|
48 |
+
if torch.is_tensor(idx):
|
49 |
+
idx = idx.tolist()
|
50 |
+
|
51 |
+
img_name = os.path.join(self.root_dir, self.metadata.iloc[idx, 1])
|
52 |
+
image = io.imread(img_name)
|
53 |
+
focus_value = self.metadata.iloc[idx, 5]
|
54 |
+
sample = {"image": image, "focus_value": focus_value}
|
55 |
+
|
56 |
+
if self.transform:
|
57 |
+
sample = self.transform(sample)
|
58 |
+
|
59 |
+
return sample
|
60 |
+
|