Hannes Kuchelmeister
commited on
Commit
·
d908fd7
1
Parent(s):
a10a7fc
implement simple model
Browse files
models/notebooks/1.0-hfk-datamodules-exploration.ipynb
CHANGED
|
@@ -393,7 +393,7 @@
|
|
| 393 |
},
|
| 394 |
{
|
| 395 |
"cell_type": "code",
|
| 396 |
-
"execution_count":
|
| 397 |
"metadata": {},
|
| 398 |
"outputs": [
|
| 399 |
{
|
|
@@ -402,7 +402,7 @@
|
|
| 402 |
"64"
|
| 403 |
]
|
| 404 |
},
|
| 405 |
-
"execution_count":
|
| 406 |
"metadata": {},
|
| 407 |
"output_type": "execute_result"
|
| 408 |
}
|
|
@@ -413,6 +413,53 @@
|
|
| 413 |
"\n",
|
| 414 |
"len(data[\"focus_value\"])"
|
| 415 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
}
|
| 417 |
],
|
| 418 |
"metadata": {
|
|
|
|
| 393 |
},
|
| 394 |
{
|
| 395 |
"cell_type": "code",
|
| 396 |
+
"execution_count": 8,
|
| 397 |
"metadata": {},
|
| 398 |
"outputs": [
|
| 399 |
{
|
|
|
|
| 402 |
"64"
|
| 403 |
]
|
| 404 |
},
|
| 405 |
+
"execution_count": 8,
|
| 406 |
"metadata": {},
|
| 407 |
"output_type": "execute_result"
|
| 408 |
}
|
|
|
|
| 413 |
"\n",
|
| 414 |
"len(data[\"focus_value\"])"
|
| 415 |
]
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"cell_type": "code",
|
| 419 |
+
"execution_count": 9,
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"outputs": [
|
| 422 |
+
{
|
| 423 |
+
"name": "stderr",
|
| 424 |
+
"output_type": "stream",
|
| 425 |
+
"text": [
|
| 426 |
+
"/home/hku/.local/lib/python3.8/site-packages/torch/nn/modules/loss.py:96: UserWarning: Using a target size (torch.Size([64])) that is different to the input size (torch.Size([64, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.\n",
|
| 427 |
+
" return F.l1_loss(input, target, reduction=self.reduction)\n"
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"data": {
|
| 432 |
+
"text/plain": [
|
| 433 |
+
"(tensor(2.5787, grad_fn=<L1LossBackward0>),\n",
|
| 434 |
+
" tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 435 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 436 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
|
| 437 |
+
" tensor([-1.2805, -0.0943, -2.3645, 0.8542, -0.8047, -6.0020, 0.0000, -4.3352,\n",
|
| 438 |
+
" -1.8066, -2.7189, -6.4697, -3.2557, -4.2778, -5.0264, -3.4891, 0.0000,\n",
|
| 439 |
+
" -1.7181, -2.7314, 0.3324, -0.0943, -0.8991, 0.0000, -4.4178, 1.9723,\n",
|
| 440 |
+
" -3.0026, -5.5685, 3.8374, 3.8625, -0.4125, -4.1936, -1.5781, -1.6393,\n",
|
| 441 |
+
" -2.9583, -5.4933, -1.7807, -3.3135, -5.3423, -0.7978, -5.3971, -4.9412,\n",
|
| 442 |
+
" 0.0000, -4.4128, -5.7744, -5.2755, -1.0996, -5.7482, 0.0000, -0.1737,\n",
|
| 443 |
+
" -3.5851, -6.1429, -6.3642, -3.9653, -0.2081, -0.9539, -0.4159, -0.5388,\n",
|
| 444 |
+
" -1.3643, -4.4441, -1.5161, 0.6395, -5.4710, -2.6482, 0.0000, -2.6257],\n",
|
| 445 |
+
" dtype=torch.float64))"
|
| 446 |
+
]
|
| 447 |
+
},
|
| 448 |
+
"execution_count": 9,
|
| 449 |
+
"metadata": {},
|
| 450 |
+
"output_type": "execute_result"
|
| 451 |
+
}
|
| 452 |
+
],
|
| 453 |
+
"source": [
|
| 454 |
+
"import types\n",
|
| 455 |
+
"import importlib.machinery\n",
|
| 456 |
+
"focus_module = SourceFileLoader('focus_module', '../src/models/focus_module.py').load_module()\n",
|
| 457 |
+
"from focus_module import FocusLitModule\n",
|
| 458 |
+
"\n",
|
| 459 |
+
"model = FocusLitModule()\n",
|
| 460 |
+
"\n",
|
| 461 |
+
"model.step(data)"
|
| 462 |
+
]
|
| 463 |
}
|
| 464 |
],
|
| 465 |
"metadata": {
|
models/requirements.txt
CHANGED
|
@@ -6,6 +6,7 @@ torchmetrics>=0.7.0
|
|
| 6 |
|
| 7 |
# --------- data and model dependencies --------- #
|
| 8 |
scikit-image
|
|
|
|
| 9 |
|
| 10 |
# --------- hydra --------- #
|
| 11 |
hydra-core>=1.1.0
|
|
|
|
| 6 |
|
| 7 |
# --------- data and model dependencies --------- #
|
| 8 |
scikit-image
|
| 9 |
+
pandas
|
| 10 |
|
| 11 |
# --------- hydra --------- #
|
| 12 |
hydra-core>=1.1.0
|
models/src/datamodules/focus_datamodule.py
CHANGED
|
@@ -51,7 +51,7 @@ class FocusDataSet(Dataset):
|
|
| 51 |
sample = {"image": image, "focus_value": focus_value}
|
| 52 |
|
| 53 |
if self.transform:
|
| 54 |
-
sample = self.transform(sample)
|
| 55 |
|
| 56 |
return sample
|
| 57 |
|
|
@@ -76,7 +76,9 @@ class FocusDataModule(LightningDataModule):
|
|
| 76 |
self.save_hyperparameters(logger=False)
|
| 77 |
|
| 78 |
# data transformations
|
| 79 |
-
self.transforms = transforms.Compose(
|
|
|
|
|
|
|
| 80 |
|
| 81 |
self.data_train: Optional[Dataset] = None
|
| 82 |
self.data_val: Optional[Dataset] = None
|
|
|
|
| 51 |
sample = {"image": image, "focus_value": focus_value}
|
| 52 |
|
| 53 |
if self.transform:
|
| 54 |
+
sample["image"] = self.transform(sample["image"])
|
| 55 |
|
| 56 |
return sample
|
| 57 |
|
|
|
|
| 76 |
self.save_hyperparameters(logger=False)
|
| 77 |
|
| 78 |
# data transformations
|
| 79 |
+
self.transforms = transforms.Compose(
|
| 80 |
+
[transforms.ToTensor(), transforms.ConvertImageDtype(torch.float)]
|
| 81 |
+
)
|
| 82 |
|
| 83 |
self.data_train: Optional[Dataset] = None
|
| 84 |
self.data_val: Optional[Dataset] = None
|
models/src/models/focus_module.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, List
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from pytorch_lightning import LightningModule
|
| 6 |
+
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric
|
| 7 |
+
from torchmetrics.classification.accuracy import Accuracy
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class SimpleDenseNet(nn.Module):
|
| 11 |
+
def __init__(self, hparams: dict):
|
| 12 |
+
super().__init__()
|
| 13 |
+
|
| 14 |
+
self.model = nn.Sequential(
|
| 15 |
+
nn.Linear(hparams["input_size"], hparams["lin1_size"]),
|
| 16 |
+
nn.BatchNorm1d(hparams["lin1_size"]),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
nn.Linear(hparams["lin1_size"], hparams["lin2_size"]),
|
| 19 |
+
nn.BatchNorm1d(hparams["lin2_size"]),
|
| 20 |
+
nn.ReLU(),
|
| 21 |
+
nn.Linear(hparams["lin2_size"], hparams["lin3_size"]),
|
| 22 |
+
nn.BatchNorm1d(hparams["lin3_size"]),
|
| 23 |
+
nn.ReLU(),
|
| 24 |
+
nn.Linear(hparams["lin3_size"], hparams["output_size"]),
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
batch_size, channels, width, height = x.size()
|
| 29 |
+
|
| 30 |
+
# (batch, 1, width, height) -> (batch, 1*width*height)
|
| 31 |
+
x = x.view(batch_size, -1)
|
| 32 |
+
|
| 33 |
+
return self.model(x)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class FocusLitModule(LightningModule):
|
| 37 |
+
"""
|
| 38 |
+
Example of LightningModule for MNIST classification.
|
| 39 |
+
|
| 40 |
+
A LightningModule organizes your PyTorch code into 5 sections:
|
| 41 |
+
- Computations (init).
|
| 42 |
+
- Train loop (training_step)
|
| 43 |
+
- Validation loop (validation_step)
|
| 44 |
+
- Test loop (test_step)
|
| 45 |
+
- Optimizers (configure_optimizers)
|
| 46 |
+
|
| 47 |
+
Read the docs:
|
| 48 |
+
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
input_size: int = 75 * 75 * 3,
|
| 54 |
+
lin1_size: int = 256,
|
| 55 |
+
lin2_size: int = 256,
|
| 56 |
+
lin3_size: int = 256,
|
| 57 |
+
output_size: int = 1,
|
| 58 |
+
lr: float = 0.001,
|
| 59 |
+
weight_decay: float = 0.0005,
|
| 60 |
+
):
|
| 61 |
+
super().__init__()
|
| 62 |
+
|
| 63 |
+
# this line allows to access init params with 'self.hparams' attribute
|
| 64 |
+
# it also ensures init params will be stored in ckpt
|
| 65 |
+
self.save_hyperparameters(logger=False)
|
| 66 |
+
|
| 67 |
+
self.model = SimpleDenseNet(hparams=self.hparams)
|
| 68 |
+
|
| 69 |
+
# loss function
|
| 70 |
+
self.criterion = torch.nn.L1Loss()
|
| 71 |
+
|
| 72 |
+
# use separate metric instance for train, val and test step
|
| 73 |
+
# to ensure a proper reduction over the epoch
|
| 74 |
+
self.train_acc = MeanAbsoluteError()
|
| 75 |
+
self.val_acc = MeanAbsoluteError()
|
| 76 |
+
self.test_acc = MeanAbsoluteError()
|
| 77 |
+
|
| 78 |
+
# for logging best so far validation accuracy
|
| 79 |
+
self.val_acc_best = MinMetric()
|
| 80 |
+
|
| 81 |
+
def forward(self, x: torch.Tensor):
|
| 82 |
+
return self.model(x)
|
| 83 |
+
|
| 84 |
+
def step(self, batch: Any):
|
| 85 |
+
x = batch["image"]
|
| 86 |
+
y = batch["focus_value"]
|
| 87 |
+
logits = self.forward(x)
|
| 88 |
+
loss = self.criterion(logits, y)
|
| 89 |
+
preds = torch.argmax(logits, dim=1)
|
| 90 |
+
return loss, preds, y
|
| 91 |
+
|
| 92 |
+
def training_step(self, batch: Any, batch_idx: int):
|
| 93 |
+
loss, preds, targets = self.step(batch)
|
| 94 |
+
|
| 95 |
+
# log train metrics
|
| 96 |
+
acc = self.train_acc(preds, targets)
|
| 97 |
+
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
|
| 98 |
+
self.log("train/acc", acc, on_step=False, on_epoch=True, prog_bar=True)
|
| 99 |
+
|
| 100 |
+
# we can return here dict with any tensors
|
| 101 |
+
# and then read it in some callback or in `training_epoch_end()`` below
|
| 102 |
+
# remember to always return loss from `training_step()` or else backpropagation will fail!
|
| 103 |
+
return {"loss": loss, "preds": preds, "targets": targets}
|
| 104 |
+
|
| 105 |
+
def training_epoch_end(self, outputs: List[Any]):
|
| 106 |
+
# `outputs` is a list of dicts returned from `training_step()`
|
| 107 |
+
pass
|
| 108 |
+
|
| 109 |
+
def validation_step(self, batch: Any, batch_idx: int):
|
| 110 |
+
loss, preds, targets = self.step(batch)
|
| 111 |
+
|
| 112 |
+
# log val metrics
|
| 113 |
+
acc = self.val_acc(preds, targets)
|
| 114 |
+
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
|
| 115 |
+
self.log("val/acc", acc, on_step=False, on_epoch=True, prog_bar=True)
|
| 116 |
+
|
| 117 |
+
return {"loss": loss, "preds": preds, "targets": targets}
|
| 118 |
+
|
| 119 |
+
def validation_epoch_end(self, outputs: List[Any]):
|
| 120 |
+
acc = self.val_acc.compute() # get val accuracy from current epoch
|
| 121 |
+
self.val_acc_best.update(acc)
|
| 122 |
+
self.log(
|
| 123 |
+
"val/acc_best", self.val_acc_best.compute(), on_epoch=True, prog_bar=True
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
def test_step(self, batch: Any, batch_idx: int):
|
| 127 |
+
loss, preds, targets = self.step(batch)
|
| 128 |
+
|
| 129 |
+
# log test metrics
|
| 130 |
+
acc = self.test_acc(preds, targets)
|
| 131 |
+
self.log("test/loss", loss, on_step=False, on_epoch=True)
|
| 132 |
+
self.log("test/acc", acc, on_step=False, on_epoch=True)
|
| 133 |
+
|
| 134 |
+
return {"loss": loss, "preds": preds, "targets": targets}
|
| 135 |
+
|
| 136 |
+
def test_epoch_end(self, outputs: List[Any]):
|
| 137 |
+
pass
|
| 138 |
+
|
| 139 |
+
def on_epoch_end(self):
|
| 140 |
+
# reset metrics at the end of every epoch
|
| 141 |
+
self.train_acc.reset()
|
| 142 |
+
self.test_acc.reset()
|
| 143 |
+
self.val_acc.reset()
|
| 144 |
+
|
| 145 |
+
def configure_optimizers(self):
|
| 146 |
+
"""Choose what optimizers and learning-rate schedulers.
|
| 147 |
+
|
| 148 |
+
Normally you'd need one. But in the case of GANs or similar you might have multiple.
|
| 149 |
+
|
| 150 |
+
See examples here:
|
| 151 |
+
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
|
| 152 |
+
"""
|
| 153 |
+
return torch.optim.Adam(
|
| 154 |
+
params=self.parameters(),
|
| 155 |
+
lr=self.hparams.lr,
|
| 156 |
+
weight_decay=self.hparams.weight_decay,
|
| 157 |
+
)
|