Hannes Kuchelmeister
commited on
Commit
•
d908fd7
1
Parent(s):
a10a7fc
implement simple model
Browse files
models/notebooks/1.0-hfk-datamodules-exploration.ipynb
CHANGED
@@ -393,7 +393,7 @@
|
|
393 |
},
|
394 |
{
|
395 |
"cell_type": "code",
|
396 |
-
"execution_count":
|
397 |
"metadata": {},
|
398 |
"outputs": [
|
399 |
{
|
@@ -402,7 +402,7 @@
|
|
402 |
"64"
|
403 |
]
|
404 |
},
|
405 |
-
"execution_count":
|
406 |
"metadata": {},
|
407 |
"output_type": "execute_result"
|
408 |
}
|
@@ -413,6 +413,53 @@
|
|
413 |
"\n",
|
414 |
"len(data[\"focus_value\"])"
|
415 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
}
|
417 |
],
|
418 |
"metadata": {
|
|
|
393 |
},
|
394 |
{
|
395 |
"cell_type": "code",
|
396 |
+
"execution_count": 8,
|
397 |
"metadata": {},
|
398 |
"outputs": [
|
399 |
{
|
|
|
402 |
"64"
|
403 |
]
|
404 |
},
|
405 |
+
"execution_count": 8,
|
406 |
"metadata": {},
|
407 |
"output_type": "execute_result"
|
408 |
}
|
|
|
413 |
"\n",
|
414 |
"len(data[\"focus_value\"])"
|
415 |
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": 9,
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"name": "stderr",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"/home/hku/.local/lib/python3.8/site-packages/torch/nn/modules/loss.py:96: UserWarning: Using a target size (torch.Size([64])) that is different to the input size (torch.Size([64, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.\n",
|
427 |
+
" return F.l1_loss(input, target, reduction=self.reduction)\n"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"data": {
|
432 |
+
"text/plain": [
|
433 |
+
"(tensor(2.5787, grad_fn=<L1LossBackward0>),\n",
|
434 |
+
" tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
435 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
436 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),\n",
|
437 |
+
" tensor([-1.2805, -0.0943, -2.3645, 0.8542, -0.8047, -6.0020, 0.0000, -4.3352,\n",
|
438 |
+
" -1.8066, -2.7189, -6.4697, -3.2557, -4.2778, -5.0264, -3.4891, 0.0000,\n",
|
439 |
+
" -1.7181, -2.7314, 0.3324, -0.0943, -0.8991, 0.0000, -4.4178, 1.9723,\n",
|
440 |
+
" -3.0026, -5.5685, 3.8374, 3.8625, -0.4125, -4.1936, -1.5781, -1.6393,\n",
|
441 |
+
" -2.9583, -5.4933, -1.7807, -3.3135, -5.3423, -0.7978, -5.3971, -4.9412,\n",
|
442 |
+
" 0.0000, -4.4128, -5.7744, -5.2755, -1.0996, -5.7482, 0.0000, -0.1737,\n",
|
443 |
+
" -3.5851, -6.1429, -6.3642, -3.9653, -0.2081, -0.9539, -0.4159, -0.5388,\n",
|
444 |
+
" -1.3643, -4.4441, -1.5161, 0.6395, -5.4710, -2.6482, 0.0000, -2.6257],\n",
|
445 |
+
" dtype=torch.float64))"
|
446 |
+
]
|
447 |
+
},
|
448 |
+
"execution_count": 9,
|
449 |
+
"metadata": {},
|
450 |
+
"output_type": "execute_result"
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"source": [
|
454 |
+
"import types\n",
|
455 |
+
"import importlib.machinery\n",
|
456 |
+
"focus_module = SourceFileLoader('focus_module', '../src/models/focus_module.py').load_module()\n",
|
457 |
+
"from focus_module import FocusLitModule\n",
|
458 |
+
"\n",
|
459 |
+
"model = FocusLitModule()\n",
|
460 |
+
"\n",
|
461 |
+
"model.step(data)"
|
462 |
+
]
|
463 |
}
|
464 |
],
|
465 |
"metadata": {
|
models/requirements.txt
CHANGED
@@ -6,6 +6,7 @@ torchmetrics>=0.7.0
|
|
6 |
|
7 |
# --------- data and model dependencies --------- #
|
8 |
scikit-image
|
|
|
9 |
|
10 |
# --------- hydra --------- #
|
11 |
hydra-core>=1.1.0
|
|
|
6 |
|
7 |
# --------- data and model dependencies --------- #
|
8 |
scikit-image
|
9 |
+
pandas
|
10 |
|
11 |
# --------- hydra --------- #
|
12 |
hydra-core>=1.1.0
|
models/src/datamodules/focus_datamodule.py
CHANGED
@@ -51,7 +51,7 @@ class FocusDataSet(Dataset):
|
|
51 |
sample = {"image": image, "focus_value": focus_value}
|
52 |
|
53 |
if self.transform:
|
54 |
-
sample = self.transform(sample)
|
55 |
|
56 |
return sample
|
57 |
|
@@ -76,7 +76,9 @@ class FocusDataModule(LightningDataModule):
|
|
76 |
self.save_hyperparameters(logger=False)
|
77 |
|
78 |
# data transformations
|
79 |
-
self.transforms = transforms.Compose(
|
|
|
|
|
80 |
|
81 |
self.data_train: Optional[Dataset] = None
|
82 |
self.data_val: Optional[Dataset] = None
|
|
|
51 |
sample = {"image": image, "focus_value": focus_value}
|
52 |
|
53 |
if self.transform:
|
54 |
+
sample["image"] = self.transform(sample["image"])
|
55 |
|
56 |
return sample
|
57 |
|
|
|
76 |
self.save_hyperparameters(logger=False)
|
77 |
|
78 |
# data transformations
|
79 |
+
self.transforms = transforms.Compose(
|
80 |
+
[transforms.ToTensor(), transforms.ConvertImageDtype(torch.float)]
|
81 |
+
)
|
82 |
|
83 |
self.data_train: Optional[Dataset] = None
|
84 |
self.data_val: Optional[Dataset] = None
|
models/src/models/focus_module.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from pytorch_lightning import LightningModule
|
6 |
+
from torchmetrics import MaxMetric, MeanAbsoluteError, MinMetric
|
7 |
+
from torchmetrics.classification.accuracy import Accuracy
|
8 |
+
|
9 |
+
|
10 |
+
class SimpleDenseNet(nn.Module):
|
11 |
+
def __init__(self, hparams: dict):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
self.model = nn.Sequential(
|
15 |
+
nn.Linear(hparams["input_size"], hparams["lin1_size"]),
|
16 |
+
nn.BatchNorm1d(hparams["lin1_size"]),
|
17 |
+
nn.ReLU(),
|
18 |
+
nn.Linear(hparams["lin1_size"], hparams["lin2_size"]),
|
19 |
+
nn.BatchNorm1d(hparams["lin2_size"]),
|
20 |
+
nn.ReLU(),
|
21 |
+
nn.Linear(hparams["lin2_size"], hparams["lin3_size"]),
|
22 |
+
nn.BatchNorm1d(hparams["lin3_size"]),
|
23 |
+
nn.ReLU(),
|
24 |
+
nn.Linear(hparams["lin3_size"], hparams["output_size"]),
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
batch_size, channels, width, height = x.size()
|
29 |
+
|
30 |
+
# (batch, 1, width, height) -> (batch, 1*width*height)
|
31 |
+
x = x.view(batch_size, -1)
|
32 |
+
|
33 |
+
return self.model(x)
|
34 |
+
|
35 |
+
|
36 |
+
class FocusLitModule(LightningModule):
|
37 |
+
"""
|
38 |
+
Example of LightningModule for MNIST classification.
|
39 |
+
|
40 |
+
A LightningModule organizes your PyTorch code into 5 sections:
|
41 |
+
- Computations (init).
|
42 |
+
- Train loop (training_step)
|
43 |
+
- Validation loop (validation_step)
|
44 |
+
- Test loop (test_step)
|
45 |
+
- Optimizers (configure_optimizers)
|
46 |
+
|
47 |
+
Read the docs:
|
48 |
+
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
input_size: int = 75 * 75 * 3,
|
54 |
+
lin1_size: int = 256,
|
55 |
+
lin2_size: int = 256,
|
56 |
+
lin3_size: int = 256,
|
57 |
+
output_size: int = 1,
|
58 |
+
lr: float = 0.001,
|
59 |
+
weight_decay: float = 0.0005,
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
# this line allows to access init params with 'self.hparams' attribute
|
64 |
+
# it also ensures init params will be stored in ckpt
|
65 |
+
self.save_hyperparameters(logger=False)
|
66 |
+
|
67 |
+
self.model = SimpleDenseNet(hparams=self.hparams)
|
68 |
+
|
69 |
+
# loss function
|
70 |
+
self.criterion = torch.nn.L1Loss()
|
71 |
+
|
72 |
+
# use separate metric instance for train, val and test step
|
73 |
+
# to ensure a proper reduction over the epoch
|
74 |
+
self.train_acc = MeanAbsoluteError()
|
75 |
+
self.val_acc = MeanAbsoluteError()
|
76 |
+
self.test_acc = MeanAbsoluteError()
|
77 |
+
|
78 |
+
# for logging best so far validation accuracy
|
79 |
+
self.val_acc_best = MinMetric()
|
80 |
+
|
81 |
+
def forward(self, x: torch.Tensor):
|
82 |
+
return self.model(x)
|
83 |
+
|
84 |
+
def step(self, batch: Any):
|
85 |
+
x = batch["image"]
|
86 |
+
y = batch["focus_value"]
|
87 |
+
logits = self.forward(x)
|
88 |
+
loss = self.criterion(logits, y)
|
89 |
+
preds = torch.argmax(logits, dim=1)
|
90 |
+
return loss, preds, y
|
91 |
+
|
92 |
+
def training_step(self, batch: Any, batch_idx: int):
|
93 |
+
loss, preds, targets = self.step(batch)
|
94 |
+
|
95 |
+
# log train metrics
|
96 |
+
acc = self.train_acc(preds, targets)
|
97 |
+
self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
|
98 |
+
self.log("train/acc", acc, on_step=False, on_epoch=True, prog_bar=True)
|
99 |
+
|
100 |
+
# we can return here dict with any tensors
|
101 |
+
# and then read it in some callback or in `training_epoch_end()`` below
|
102 |
+
# remember to always return loss from `training_step()` or else backpropagation will fail!
|
103 |
+
return {"loss": loss, "preds": preds, "targets": targets}
|
104 |
+
|
105 |
+
def training_epoch_end(self, outputs: List[Any]):
|
106 |
+
# `outputs` is a list of dicts returned from `training_step()`
|
107 |
+
pass
|
108 |
+
|
109 |
+
def validation_step(self, batch: Any, batch_idx: int):
|
110 |
+
loss, preds, targets = self.step(batch)
|
111 |
+
|
112 |
+
# log val metrics
|
113 |
+
acc = self.val_acc(preds, targets)
|
114 |
+
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False)
|
115 |
+
self.log("val/acc", acc, on_step=False, on_epoch=True, prog_bar=True)
|
116 |
+
|
117 |
+
return {"loss": loss, "preds": preds, "targets": targets}
|
118 |
+
|
119 |
+
def validation_epoch_end(self, outputs: List[Any]):
|
120 |
+
acc = self.val_acc.compute() # get val accuracy from current epoch
|
121 |
+
self.val_acc_best.update(acc)
|
122 |
+
self.log(
|
123 |
+
"val/acc_best", self.val_acc_best.compute(), on_epoch=True, prog_bar=True
|
124 |
+
)
|
125 |
+
|
126 |
+
def test_step(self, batch: Any, batch_idx: int):
|
127 |
+
loss, preds, targets = self.step(batch)
|
128 |
+
|
129 |
+
# log test metrics
|
130 |
+
acc = self.test_acc(preds, targets)
|
131 |
+
self.log("test/loss", loss, on_step=False, on_epoch=True)
|
132 |
+
self.log("test/acc", acc, on_step=False, on_epoch=True)
|
133 |
+
|
134 |
+
return {"loss": loss, "preds": preds, "targets": targets}
|
135 |
+
|
136 |
+
def test_epoch_end(self, outputs: List[Any]):
|
137 |
+
pass
|
138 |
+
|
139 |
+
def on_epoch_end(self):
|
140 |
+
# reset metrics at the end of every epoch
|
141 |
+
self.train_acc.reset()
|
142 |
+
self.test_acc.reset()
|
143 |
+
self.val_acc.reset()
|
144 |
+
|
145 |
+
def configure_optimizers(self):
|
146 |
+
"""Choose what optimizers and learning-rate schedulers.
|
147 |
+
|
148 |
+
Normally you'd need one. But in the case of GANs or similar you might have multiple.
|
149 |
+
|
150 |
+
See examples here:
|
151 |
+
https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers
|
152 |
+
"""
|
153 |
+
return torch.optim.Adam(
|
154 |
+
params=self.parameters(),
|
155 |
+
lr=self.hparams.lr,
|
156 |
+
weight_decay=self.hparams.weight_decay,
|
157 |
+
)
|