lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1

This model is a fine-tuned version of zwaarcontrast/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0645
  • Precision: 0.8277
  • Recall: 0.8277
  • F1: 0.8277
  • Accuracy: 0.8277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.05 100 0.1162 0.6875 0.6875 0.6875 0.6875
No log 0.11 200 0.1097 0.6755 0.6755 0.6755 0.6755
No log 0.16 300 0.0866 0.7781 0.7781 0.7781 0.7781
No log 0.21 400 0.1018 0.7478 0.7478 0.7478 0.7478
0.0975 0.27 500 0.0645 0.8277 0.8277 0.8277 0.8277
0.0975 0.32 600 0.0767 0.7985 0.7985 0.7985 0.7985
0.0975 0.37 700 0.0758 0.7903 0.7903 0.7903 0.7903
0.0975 0.43 800 0.0862 0.7865 0.7865 0.7865 0.7865
0.0975 0.48 900 0.1243 0.6892 0.6892 0.6892 0.6892
0.1389 0.53 1000 0.0795 0.8256 0.8256 0.8256 0.8256
0.1389 0.59 1100 0.1683 0.4702 0.4702 0.4702 0.4702
0.1389 0.64 1200 0.1253 0.6636 0.6636 0.6636 0.6636
0.1389 0.69 1300 0.1044 0.7295 0.7295 0.7295 0.7295
0.1389 0.75 1400 0.1235 0.6477 0.6477 0.6477 0.6477
0.1018 0.8 1500 0.1113 0.7276 0.7276 0.7276 0.7276
0.1018 0.85 1600 0.1014 0.7317 0.7317 0.7317 0.7317
0.1018 0.91 1700 0.0963 0.7293 0.7293 0.7293 0.7293
0.1018 0.96 1800 0.1012 0.7323 0.7323 0.7323 0.7323

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
19
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zwaarcontrast/lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v1

Finetuned
(1)
this model